/////////////////////////////////////////// // ahbapbbridge.sv // // Written: David_Harris@hmc.edu & Nic Lucio 7 June 2022 // // Purpose: AHB to APB bridge // // Documentation: RISC-V System on Chip Design Chapter 6 // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// module ahbapbbridge import cvw::*; #(parameter cvw_t P, parameter PERIPHS = 2) ( input logic HCLK, HRESETn, input logic [PERIPHS-1:0] HSEL, input logic [P.PA_BITS-1:0] HADDR, input logic [P.XLEN-1:0] HWDATA, input logic [P.XLEN/8-1:0] HWSTRB, input logic HWRITE, input logic [1:0] HTRANS, input logic HREADY, // input logic [3:0] HPROT, // not used output logic [P.XLEN-1:0] HRDATA, output logic HRESP, HREADYOUT, output logic PCLK, PRESETn, output logic [PERIPHS-1:0] PSEL, output logic PWRITE, output logic PENABLE, output logic [31:0] PADDR, output logic [P.XLEN-1:0] PWDATA, // output logic [2:0] PPROT, // not used output logic [P.XLEN/8-1:0] PSTRB, // output logic PWAKEUP // not used input logic [PERIPHS-1:0] PREADY, input var [PERIPHS-1:0][P.XLEN-1:0] PRDATA ); logic initTrans, initTransSel, initTransSelD; logic nextPENABLE; logic PREADYOUT; // convert AHB to APB signals assign PCLK = HCLK; assign PRESETn = HRESETn; // identify start of a transaction assign initTrans = HTRANS[1] & HREADY; // start a transaction when the bus is ready and an active transaction is requested assign initTransSel = initTrans & |HSEL; // capture data and address if any of the peripherals are selected // delay AHB Address phase signals to align with AHB Data phase because APB expects them at the same time flopen #(32) addrreg(HCLK, HREADY, HADDR[31:0], PADDR); flopenr #(1) writereg(HCLK, ~HRESETn, HREADY, HWRITE, PWRITE); flopenr #(PERIPHS) selreg(HCLK, ~HRESETn, HREADY, HSEL & {PERIPHS{initTrans}}, PSEL); // PPROT[2:0] = {Data/InstrB, Secure, Privileged}; // assign PPROT = {~HPROT[0], 1'b0, HPROT[1]}; // protection not presently used // assign PWAKEUP = 1'b1; // not used // AHB Data phase signal doesn't need delay. Note that they are guaranteed to remain stable until READY is asserted assign PWDATA = HWDATA; assign PSTRB = HWSTRB; // enable logic: goes high a cycle after initTrans, then back low on cycle after desired PREADY is asserted // cycle1: AHB puts HADDR, HWRITE, HSEL on bus. initTrans is 1, and these are captured // cycle2: AHB puts HWDATA on the bus. This effectively extends the setup phase // cycle3: bridge raises PENABLE. Peripheral typically responds with PREADY. // Read occurs by end of cycle. Write occurs at end of cycle. flopr #(1) inittransreg(HCLK, ~HRESETn, initTransSel, initTransSelD); assign nextPENABLE = PENABLE ? ~HREADY : initTransSelD; flopr #(1) enablereg(HCLK, ~HRESETn, nextPENABLE, PENABLE); // result and ready multiplexer int i; always_comb begin // default: no peripheral selected: read 0, indicate ready during access phase so bus doesn't hang // *** also could assert ready right away HRDATA = 0; PREADYOUT = 1'b1; for (i=0; i