cvw/pipelined/src/fpu/fma.sv

92 lines
4.9 KiB
Systemverilog

///////////////////////////////////////////
//
// Written: 6/23/2021 me@KatherineParry.com, David_Harris@hmc.edu
// Modified:
//
// Purpose: Floating point multiply-accumulate of configurable size
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module fma(
input logic Xs, Ys, Zs, // input's signs
input logic [`NE-1:0] Xe, Ye, Ze, // input's biased exponents in B(NE.0) format
input logic [`NF:0] Xm, Ym, Zm, // input's significands in U(0.NF) format
input logic XZero, YZero, ZZero, // is the input zero
input logic [2:0] OpCtrl, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic [`FMTBITS-1:0] Fmt, // format of the result single double half or quad
output logic [`NE+1:0] Pe, // the product's exponent B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
output logic ZmSticky, // sticky bit that is calculated during alignment
output logic KillProd, // set the product to zero before addition if the product is too small to matter
output logic [3*`NF+5:0] Sm, // the positive sum's significand
output logic NegSum, // was the sum negitive
output logic InvA, // Was A inverted for effective subtraction (P-A or -P+A)
output logic As, // the aligned addend's sign (modified Z sign for other opperations)
output logic Ps, // the product's sign
output logic Ss, // the sum's sign
output logic [`NE+1:0] Se,
output logic [$clog2(3*`NF+7)-1:0] SCnt // normalization shift count
);
logic [2*`NF+1:0] Pm; // the product's significand in U(2.2Nf) format
logic [3*`NF+5:0] Am; // addend aligned's mantissa for addition in U(NF+5.2NF+1)
logic [3*`NF+5:0] AmInv; // aligned addend's mantissa possibly inverted
logic [2*`NF+1:0] PmKilled; // the product's mantissa possibly killed
///////////////////////////////////////////////////////////////////////////////
// Calculate the product
// - When multipliying two fp numbers, add the exponents
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
// - If the product is zero then kill the exponent
// - Multiply the mantissas
///////////////////////////////////////////////////////////////////////////////
// calculate the product's exponent
fmaexpadd expadd(.Fmt, .Xe, .Ye, .XZero, .YZero, .Pe);
// multiplication of the mantissa's
fmamult mult(.Xm, .Ym, .Pm);
///////////////////////////////////////////////////////////////////////////////
// Alignment shifter
///////////////////////////////////////////////////////////////////////////////
// calculate the signs and take the opperation into account
fmasign sign(.OpCtrl, .Xs, .Ys, .Zs, .Ps, .As, .InvA);
fmaalign align(.Ze, .Zm, .XZero, .YZero, .ZZero, .Xe, .Ye,
.Am, .ZmSticky, .KillProd);
// ///////////////////////////////////////////////////////////////////////////////
// // Addition/LZA
// ///////////////////////////////////////////////////////////////////////////////
fmaadd add(.Am, .Pm, .Ze, .Pe, .Ps, .As, .KillProd, .ZmSticky, .AmInv, .PmKilled, .NegSum, .InvA, .Sm, .Se, .Ss);
fmalza #(3*`NF+6) lza(.A(AmInv), .Pm({PmKilled, 1'b0, InvA&Ps&ZmSticky&KillProd}), .Cin(InvA & ~(ZmSticky & ~KillProd)), .sub(InvA), .SCnt);
endmodule