/////////////////////////////////////////// // // Written: 6/23/2021 me@KatherineParry.com, David_Harris@hmc.edu // Modified: // // Purpose: Floating point multiply-accumulate of configurable size // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fma( input logic Xs, Ys, Zs, // input's signs input logic [`NE-1:0] Xe, Ye, Ze, // input's biased exponents in B(NE.0) format input logic [`NF:0] Xm, Ym, Zm, // input's significands in U(0.NF) format input logic XZero, YZero, ZZero, // is the input zero input logic [2:0] OpCtrl, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y) input logic [`FMTBITS-1:0] Fmt, // format of the result single double half or quad output logic [`NE+1:0] Pe, // the product's exponent B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign output logic ZmSticky, // sticky bit that is calculated during alignment output logic KillProd, // set the product to zero before addition if the product is too small to matter output logic [3*`NF+5:0] Sm, // the positive sum's significand output logic NegSum, // was the sum negitive output logic InvA, // Was A inverted for effective subtraction (P-A or -P+A) output logic As, // the aligned addend's sign (modified Z sign for other opperations) output logic Ps, // the product's sign output logic Ss, // the sum's sign output logic [`NE+1:0] Se, output logic [$clog2(3*`NF+7)-1:0] SCnt // normalization shift count ); logic [2*`NF+1:0] Pm; // the product's significand in U(2.2Nf) format logic [3*`NF+5:0] Am; // addend aligned's mantissa for addition in U(NF+5.2NF+1) logic [3*`NF+5:0] AmInv; // aligned addend's mantissa possibly inverted logic [2*`NF+1:0] PmKilled; // the product's mantissa possibly killed /////////////////////////////////////////////////////////////////////////////// // Calculate the product // - When multipliying two fp numbers, add the exponents // - Subtract the bias (XExp + YExp has two biases, one from each exponent) // - If the product is zero then kill the exponent // - Multiply the mantissas /////////////////////////////////////////////////////////////////////////////// // calculate the product's exponent fmaexpadd expadd(.Fmt, .Xe, .Ye, .XZero, .YZero, .Pe); // multiplication of the mantissa's fmamult mult(.Xm, .Ym, .Pm); /////////////////////////////////////////////////////////////////////////////// // Alignment shifter /////////////////////////////////////////////////////////////////////////////// // calculate the signs and take the opperation into account fmasign sign(.OpCtrl, .Xs, .Ys, .Zs, .Ps, .As, .InvA); fmaalign align(.Ze, .Zm, .XZero, .YZero, .ZZero, .Xe, .Ye, .Am, .ZmSticky, .KillProd); // /////////////////////////////////////////////////////////////////////////////// // // Addition/LZA // /////////////////////////////////////////////////////////////////////////////// fmaadd add(.Am, .Pm, .Ze, .Pe, .Ps, .As, .KillProd, .ZmSticky, .AmInv, .PmKilled, .NegSum, .InvA, .Sm, .Se, .Ss); fmalza #(3*`NF+6) lza(.A(AmInv), .Pm({PmKilled, 1'b0, InvA&Ps&ZmSticky&KillProd}), .Cin(InvA & ~(ZmSticky & ~KillProd)), .sub(InvA), .SCnt); endmodule