cvw/synthDC/ppaAnalyze.py
2022-06-15 18:28:36 +00:00

724 lines
27 KiB
Python
Executable File

#!/usr/bin/python3
# Madeleine Masser-Frye mmasserfrye@hmc.edu 5/22
import scipy.optimize as opt
import subprocess
import csv
import re
from matplotlib.cbook import flatten
import matplotlib.pyplot as plt
import matplotlib.lines as lines
import numpy as np
from collections import namedtuple
import sklearn.metrics as skm
def synthsfromcsv(filename):
Synth = namedtuple("Synth", "module tech width freq delay area lpower denergy")
with open(filename, newline='') as csvfile:
csvreader = csv.reader(csvfile)
global allSynths
allSynths = list(csvreader)[1:]
for i in range(len(allSynths)):
for j in range(len(allSynths[0])):
try: allSynths[i][j] = int(allSynths[i][j])
except:
try: allSynths[i][j] = float(allSynths[i][j])
except: pass
allSynths[i] = Synth(*allSynths[i])
return allSynths
def synthsintocsv():
''' writes a CSV with one line for every available synthesis
each line contains the module, tech, width, target freq, and resulting metrics
'''
print("This takes a moment...")
bashCommand = "find . -path '*runs/ppa*rv32e*' -prune"
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
specReg = re.compile('[a-zA-Z0-9]+')
metricReg = re.compile('-?\d+\.\d+[e]?[-+]?\d*')
file = open("ppaData.csv", "w")
writer = csv.writer(file)
writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (fJ)'])
for oneSynth in allSynths:
module, width, risc, tech, freq = specReg.findall(oneSynth)[2:7]
tech = tech[:-2]
metrics = []
for phrase in [['Path Slack', 'qor'], ['Design Area', 'qor'], ['100', 'power']]:
bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*'
bashCommand = bashCommand.format(*phrase)
try: output = subprocess.check_output(['bash','-c', bashCommand])
except:
print(module + width + tech + freq + " doesn't have reports")
print("Consider running cleanup() first")
nums = metricReg.findall(str(output))
nums = [float(m) for m in nums]
metrics += nums
delay = 1000/int(freq) - metrics[0]
area = metrics[1]
lpower = metrics[4]
denergy = (metrics[2] + metrics[3])/int(freq) # (switching + internal powers)*delay, more practical units for regression coefs
if ('flop' in module): # since two flops in each module
[area, lpower, denergy] = [n/2 for n in [area, lpower, denergy]]
writer.writerow([module, tech, width, freq, delay, area, lpower, denergy])
file.close()
def cleanup():
''' removes runs that didn't work
'''
bashCommand = 'grep -r "Error" runs/ppa*/reports/*qor*'
try:
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
for run in allSynths:
run = run.split('MHz')[0]
bc = 'rm -r '+ run + '*'
output = subprocess.check_output(['bash','-c', bc])
except: pass
bashCommand = "find . -path '*runs/ppa*rv32e*' -prune"
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
for oneSynth in allSynths:
for phrase in [['Path Length', 'qor']]: #, ['Design Area', 'qor'], ['100', 'power']]:
bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*'
bashCommand = bashCommand.format(*phrase)
try: output = subprocess.check_output(['bash','-c', bashCommand])
except:
bc = 'rm -r '+ oneSynth[2:]
output = subprocess.check_output(['bash','-c', bc])
print("All cleaned up!")
def getVals(tech, module, var, freq=None, width=None):
''' for a specified tech, module, and variable/metric
returns a list of values for that metric in ascending width order
works at a specified target frequency or if none is given, uses the synthesis with the best achievable delay for each width
'''
if width != None:
widthsToGet = width
else:
widthsToGet = widths
metric = []
widthL = []
if (freq != None):
for oneSynth in allSynths:
if (oneSynth.freq == freq) & (oneSynth.tech == tech) & (oneSynth.module == module) & (oneSynth.width != 1):
widthL += [oneSynth.width]
osdict = oneSynth._asdict()
metric += [osdict[var]]
metric = [x for _, x in sorted(zip(widthL, metric))] # ordering
else:
for w in widthsToGet:
for oneSynth in bestSynths:
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == module):
osdict = oneSynth._asdict()
met = osdict[var]
metric += [met]
return metric
def csvOfBest(filename):
bestSynths = []
for tech in [x.tech for x in techSpecs]:
for mod in modules:
for w in widths:
m = np.Inf # large number to start
best = None
if ([mod, tech, w] in leftblue):
for oneSynth in allSynths: # leftmost blue
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod):
if (oneSynth.freq < m) & (1000/oneSynth.delay < oneSynth.freq):
# if ([mod, tech, w] != ['mux2', 'sky90', 128]) or (oneSynth.area < 1100):
m = oneSynth.freq
best = oneSynth
else:
for oneSynth in allSynths: # best achievable, rightmost green
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod):
if (oneSynth.delay < m) & (1000/oneSynth.delay > oneSynth.freq):
m = oneSynth.delay
best = oneSynth
# contenders = []
# delays = []
# for oneSynth in allSynths: # choose synth w minimal delay
# if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod):
# contenders += [oneSynth]
# delays += [oneSynth.delay]
# if oneSynth.delay < m:
# m = oneSynth.delay
# best = oneSynth
# for oneSynth in contenders: # if m is min delay, choose best area within s as percent of m
# s = oneSynth.delay/m - 1
# if s < 0.1:
# if oneSynth.area < best.area:
# best = oneSynth
# bestval = 1.9 # score algorithm
# for oneSynth in contenders:
# delaydif = abs(1 - oneSynth.delay/best.delay)
# areadif = 1 - oneSynth.area/best.area
# try: val = areadif/delaydif
# except: val = 1
# # if (oneSynth.width == 64) & (oneSynth.tech == 'sky90') & (oneSynth.module == 'comparator'):
# # print(oneSynth.freq, ' ', delaydif, ' ', areadif, ' ', val)
# if val > bestval:
# bestval = val
# best = oneSynth
if (best != None) & (best not in bestSynths):
bestSynths += [best]
file = open(filename, "w")
writer = csv.writer(file)
writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (fJ)'])
for synth in bestSynths:
writer.writerow(list(synth))
file.close()
return bestSynths
def genLegend(fits, coefs, r2=None, spec=None, ale=False):
''' generates a list of two legend elements (or just an equation if no r2 or spec)
labels line with fit equation and dots with r squared of the fit
'''
coefsr = [str(sigfig(c, 2)) for c in coefs]
if ale:
if (normAddWidth == 32):
sub = 'S'
elif normAddWidth != 1:
print('Equations are wrong, check normAddWidth')
else:
sub = 'N'
eqDict = {'c': '', 'l': sub, 's': '$'+sub+'^2$', 'g': '$log_2$('+sub+')', 'n': ''+sub+'$log_2$('+sub+')'}
eq = ''
ind = 0
for k in eqDict.keys():
if k in fits:
if str(coefsr[ind]) != '0': eq += " + " + coefsr[ind] + eqDict[k]
ind += 1
eq = eq[3:] # chop off leading ' + '
if (r2==None) or (spec==None):
return eq
else:
legend_elements = [lines.Line2D([0], [0], color=spec.color, label=eq)]
legend_elements += [lines.Line2D([0], [0], color=spec.color, ls='', marker=spec.shape, label='$R^2$='+ str(round(r2, 4)))]
return legend_elements
def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn', norm=True, color=None):
''' module: string module name
freq: int freq (MHz)
var: string delay, area, lpower, or denergy
fits: constant, linear, square, log2, Nlog2
plots given variable vs width for all matching syntheses with regression
'''
singlePlot = True
if ax or (freq == 10):
singlePlot = False
if ax is None:
ax = plt.gca()
fullLeg = []
allWidths = []
allMetrics = []
ale = (var != 'delay') # if not delay, must be area, leakage, or energy
modFit = fitDict[module]
fits = modFit[ale]
if freq:
ls = '--'
else:
ls = '-'
for spec in techSpecs:
metric = getVals(spec.tech, module, var, freq=freq)
if norm:
techdict = spec._asdict()
norm = techdict[var]
metric = [m/norm for m in metric]
if len(metric) == 5: # don't include the spec if we don't have points for all widths
xp, pred, coefs, r2 = regress(widths, metric, fits, ale)
fullLeg += genLegend(fits, coefs, r2, spec, ale=ale)
c = color if color else spec.color
ax.scatter(widths, metric, color=c, marker=spec.shape)
ax.plot(xp, pred, color=c, linestyle=ls)
allWidths += widths
allMetrics += metric
xp, pred, coefs, r2 = regress(allWidths, allMetrics, fits)
ax.plot(xp, pred, color='red', linestyle=ls)
if norm:
ylabeldic = {"lpower": "Leakage Power (add32)", "denergy": "Energy/Op (add32)", "area": "Area (add32)", "delay": "Delay (FO4)"}
else:
ylabeldic = {"lpower": "Leakage Power (nW)", "denergy": "Dynamic Energy (fJ)", "area": "Area (sq microns)", "delay": "Delay (ns)"}
ax.set_ylabel(ylabeldic[var])
ax.set_xticks(widths)
if singlePlot or (var == 'lpower') or (var == 'denergy'):
ax.set_xlabel("Width (bits)")
if not singlePlot and ((var == 'delay') or (var == 'area')):
ax.tick_params(labelbottom=False)
if singlePlot:
fullLeg += genLegend(fits, coefs, r2, combined, ale=ale)
legLoc = 'upper left' if ale else 'center right'
ax.add_artist(ax.legend(handles=fullLeg, loc=legLoc))
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)"
ax.set_title(module + titleStr)
plt.savefig('./plots/PPA/'+ module + '_' + var + '.png')
# plt.show()
return r2
def regress(widths, var, fits='clsgn', ale=False):
''' fits a curve to the given points
returns lists of x and y values to plot that curve and coefs for the eq with r2
'''
funcArr = genFuncs(fits)
xp = np.linspace(min(widths)/2, max(widths)*1.1, 200)
xpToCalc = xp
if ale:
widths = [w/normAddWidth for w in widths]
xpToCalc = [x/normAddWidth for x in xp]
mat = []
for w in widths:
row = []
for func in funcArr:
row += [func(w)]
mat += [row]
y = np.array(var, dtype=np.float)
coefs = opt.nnls(mat, y)[0]
yp = []
for w in widths:
n = [func(w) for func in funcArr]
yp += [sum(np.multiply(coefs, n))]
r2 = skm.r2_score(y, yp)
pred = []
for x in xpToCalc:
n = [func(x) for func in funcArr]
pred += [sum(np.multiply(coefs, n))]
return xp, pred, coefs, r2
def makeCoefTable():
''' writes CSV with each line containing the coefficients for a regression fit
to a particular combination of module, metric (including both techs, normalized)
'''
file = open("ppaFitting.csv", "w")
writer = csv.writer(file)
writer.writerow(['Module', 'Metric', 'Target', '1', 'N', 'N^2', 'log2(N)', 'Nlog2(N)', 'R^2'])
for module in modules:
for freq in [10, None]:
target = 'easy' if freq else 'hard'
for var in ['delay', 'area', 'lpower', 'denergy']:
ale = (var != 'delay')
metL = []
modFit = fitDict[module]
fits = modFit[ale]
for spec in techSpecs:
metric = getVals(spec.tech, module, var, freq=freq)
techdict = spec._asdict()
norm = techdict[var]
metL += [m/norm for m in metric]
xp, pred, coefs, r2 = regress(widths*2, metL, fits, ale)
coefs = np.ndarray.tolist(coefs)
coefsToWrite = [None]*5
fitTerms = 'clsgn'
ind = 0
for i in range(len(fitTerms)):
if fitTerms[i] in fits:
coefsToWrite[i] = coefs[ind]
ind += 1
row = [module, var, target] + coefsToWrite + [r2]
writer.writerow(row)
file.close()
def sigfig(num, figs):
return '{:g}'.format(float('{:.{p}g}'.format(num, p=figs)))
def makeEqTable():
''' writes CSV with each line containing the equations for fits for each metric
to a particular module (including both techs, normalized)
'''
file = open("ppaEquations.csv", "w")
writer = csv.writer(file)
writer.writerow(['Element', 'Best delay', 'Fast area', 'Fast leakage', 'Fast energy', 'Small area', 'Small leakage', 'Small energy'])
for module in modules:
eqs = []
for freq in [None, 10]:
for var in ['delay', 'area', 'lpower', 'denergy']:
if (var == 'delay') and (freq == 10):
pass
else:
ale = (var != 'delay')
metL = []
modFit = fitDict[module]
fits = modFit[ale]
for spec in techSpecs:
metric = getVals(spec.tech, module, var, freq=freq)
techdict = spec._asdict()
norm = techdict[var]
metL += [m/norm for m in metric]
xp, pred, coefs, r2 = regress(widths*2, metL, fits, ale)
coefs = np.ndarray.tolist(coefs)
eqs += [genLegend(fits, coefs, ale=ale)]
row = [module] + eqs
writer.writerow(row)
file.close()
def genFuncs(fits='clsgn'):
''' helper function for regress()
returns array of functions with one for each term desired in the regression fit
'''
funcArr = []
if 'c' in fits:
funcArr += [lambda x: 1]
if 'l' in fits:
funcArr += [lambda x: x]
if 's' in fits:
funcArr += [lambda x: x**2]
if 'g' in fits:
funcArr += [lambda x: np.log2(x)]
if 'n' in fits:
funcArr += [lambda x: x*np.log2(x)]
return funcArr
def noOutliers(median, freqs, delays, areas):
''' returns a pared down list of freqs, delays, and areas
cuts out any syntheses in which target freq isn't within 75% of the min delay target to focus on interesting area
helper function to freqPlot()
'''
f=[]
d=[]
a=[]
for i in range(len(freqs)):
norm = freqs[i]/median
if (norm > 0.4) & (norm<1.4):
f += [freqs[i]]
d += [delays[i]]
a += [areas[i]]
return f, d, a
def freqPlot(tech, mod, width):
''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width
'''
freqsL, delaysL, areasL = ([[], []] for i in range(3))
for oneSynth in allSynths:
if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech):
ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period
freqsL[ind] += [oneSynth.freq]
delaysL[ind] += [oneSynth.delay]
areasL[ind] += [oneSynth.area]
median = np.median(list(flatten(freqsL)))
f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
for ax in (ax1, ax2):
ax.ticklabel_format(useOffset=False, style='plain')
for ind in [0,1]:
areas = areasL[ind]
delays = delaysL[ind]
freqs = freqsL[ind]
freqs, delays, areas = noOutliers(median, freqs, delays, areas) # comment out to see all syntheses
c = 'blue' if ind else 'green'
ax1.scatter(freqs, delays, color=c)
ax2.scatter(freqs, areas, color=c)
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'),
lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')]
ax1.legend(handles=legend_elements)
width = str(width)
ax2.set_xlabel("Target Freq (MHz)")
ax1.set_ylabel('Delay (ns)')
ax2.set_ylabel('Area (sq microns)')
ax1.set_title(mod + '_' + width)
if ('mux' in mod) & ('d' in mod):
width = mod
mod = 'muxd'
plt.savefig('./plots/freqBuckshot/' + tech + '/' + mod + '/' + width + '.png')
# plt.show()
def squareAreaDelay(tech, mod, width):
''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width
'''
global allSynths
freqsL, delaysL, areasL = ([[], []] for i in range(3))
for oneSynth in allSynths:
if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech):
ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period
freqsL[ind] += [oneSynth.freq]
delaysL[ind] += [oneSynth.delay]
areasL[ind] += [oneSynth.area]
f, (ax1) = plt.subplots(1, 1)
ax2 = ax1.twinx()
for ind in [0,1]:
areas = areasL[ind]
delays = delaysL[ind]
targets = freqsL[ind]
targets = [1000/f for f in targets]
targets, delays, areas = noOutliers(targets, delays, areas) # comment out to see all
if not ind:
achievedDelays = delays
c = 'blue' if ind else 'green'
ax1.scatter(targets, delays, marker='^', color=c)
ax2.scatter(targets, areas, marker='s', color=c)
bestAchieved = min(achievedDelays)
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='^', label='delay (timing achieved)'),
lines.Line2D([0], [0], color='green', ls='', marker='s', label='area (timing achieved)'),
lines.Line2D([0], [0], color='blue', ls='', marker='^', label='delay (timing violated)'),
lines.Line2D([0], [0], color='blue', ls='', marker='s', label='area (timing violated)')]
ax2.legend(handles=legend_elements, loc='upper left')
ax1.set_xlabel("Delay Targeted (ns)")
ax1.set_ylabel("Delay Achieved (ns)")
ax2.set_ylabel('Area (sq microns)')
ax1.set_title(mod + '_' + str(width))
squarify(f)
xvals = np.array(ax1.get_xlim())
frac = (min(flatten(delaysL))-xvals[0])/(xvals[1]-xvals[0])
areaLowerLim = min(flatten(areasL))-100
areaUpperLim = max(flatten(areasL))/frac + areaLowerLim
ax2.set_ylim([areaLowerLim, areaUpperLim])
ax1.plot(xvals, xvals, ls="--", c=".3")
ax1.hlines(y=bestAchieved, xmin=xvals[0], xmax=xvals[1], color="black", ls='--')
plt.savefig('./plots/squareareadelay_' + mod + '_' + str(width) + '.png')
# plt.show()
def squarify(fig):
''' helper function for squareAreaDelay()
forces matplotlib figure to be a square
'''
w, h = fig.get_size_inches()
if w > h:
t = fig.subplotpars.top
b = fig.subplotpars.bottom
axs = h*(t-b)
l = (1.-axs/w)/2
fig.subplots_adjust(left=l, right=1-l)
else:
t = fig.subplotpars.right
b = fig.subplotpars.left
axs = w*(t-b)
l = (1.-axs/h)/2
fig.subplots_adjust(bottom=l, top=1-l)
def plotPPA(mod, freq=None, norm=True, aleOpt=False):
''' for the module specified, plots width vs delay, area, leakage power, and dynamic energy with fits
if no freq specified, uses the synthesis with best achievable delay for each width
overlays data from both techs
'''
plt.rcParams["figure.figsize"] = (7,3.6)
fig, axs = plt.subplots(2, 2)
arr = [['delay', 'area'], ['lpower', 'denergy']]
freqs = [freq]
if aleOpt: freqs += [10]
for i in [0, 1]:
for j in [0, 1]:
leg = []
for f in freqs:
if (arr[i][j]=='delay') and (f==10):
pass
else:
r2 = oneMetricPlot(mod, arr[i][j], ax=axs[i, j], freq=f, norm=norm)
ls = '--' if f else '-'
leg += [lines.Line2D([0], [0], color='red', label='$R^2$='+str(round(r2, 4)), linestyle=ls)]
if (mod in ['flop', 'csa']) & (arr[i][j] == 'delay'):
axs[i, j].set_ylim(ymin=0)
ytop = axs[i, j].get_ylim()[1]
axs[i, j].set_ylim(ymax=1.1*ytop)
else:
axs[i, j].legend(handles=leg, handlelength=1.5)
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else ""
plt.suptitle(mod + titleStr)
plt.tight_layout(pad=0.05, w_pad=1, h_pad=0.5, rect=(0,0,1,0.97))
if freq != 10:
n = 'normalized' if norm else 'unnormalized'
saveStr = './plots/PPA/'+ n + '/' + mod + '.png'
plt.savefig(saveStr)
# plt.show()
def plotBestAreas(mod):
fig, axs = plt.subplots(1, 1)
oneMetricPlot(mod, 'area', freq=10)
plt.title(mod + ' Optimized Areas (target freq 10MHz)')
plt.savefig('./plots/bestAreas/' + mod + '.png')
def makeDaLegend():
plt.rcParams["figure.figsize"] = (5.5,0.3)
fig = plt.figure()
fullLeg = [lines.Line2D([0], [0], color='black', label='fastest', linestyle='-')]
fullLeg += [lines.Line2D([0], [0], color='black', label='smallest', linestyle='--')]
fullLeg += [lines.Line2D([0], [0], color='blue', label='tsmc28', marker='^')]
fullLeg += [lines.Line2D([0], [0], color='green', label='sky90', marker='o')]
fullLeg += [lines.Line2D([0], [0], color='red', label='combined', marker='_')]
fig.legend(handles=fullLeg, ncol=5, handlelength=1.4, loc='center')
saveStr = './plots/PPA/legend.png'
plt.savefig(saveStr)
def calcAvgRsq():
with open('ppaFitting.csv', newline='') as csvfile:
csvreader = csv.reader(csvfile)
allSynths = list(csvreader)[1:]
csvfile.close()
others = []
muxes = []
for synth in allSynths:
if ('easy' not in synth) or ('delay' not in synth):
if 'mux' in synth[0]:
muxes += [float(synth[8])]
elif '0.0' != synth[8]:
others += [float(synth[8])]
print('Others: ', np.mean(others))
print('Muxes: ', np.mean(muxes))
def muxPlot(fits='clsgn', norm=True):
''' module: string module name
freq: int freq (MHz)
var: string delay, area, lpower, or denergy
fits: constant, linear, square, log2, Nlog2
plots given variable vs width for all matching syntheses with regression
'''
ax = plt.gca()
inputs = [2, 4, 8]
allInputs = inputs*2
fullLeg = []
for crit in ['data', 'control']:
allMetrics = []
muxes = ['mux2', 'mux4', 'mux8']
if crit == 'data':
ls = '--'
muxes = [m + 'd' for m in muxes]
elif crit == 'control':
ls = '-'
for spec in techSpecs:
metric = []
for module in muxes:
metric += getVals(spec.tech, module, 'delay', width=[1])
if norm:
techdict = spec._asdict()
norm = techdict['delay']
metric = [m/norm for m in metric]
if len(metric) == 3: # don't include the spec if we don't have points for all
xp, pred, coefs, r2 = regress(inputs, metric, fits, ale=False)
ax.scatter(inputs, metric, color=spec.color, marker=spec.shape)
ax.plot(xp, pred, color=spec.color, linestyle=ls)
allMetrics += metric
xp, pred, coefs, r2 = regress(allInputs, allMetrics, fits)
ax.plot(xp, pred, color='red', linestyle=ls)
fullLeg += [lines.Line2D([0], [0], color='red', label=crit, linestyle=ls)]
ax.set_ylabel('Delay (FO4)')
ax.set_xticks(inputs)
ax.set_xlabel("Number of inputs")
ax.set_title('mux timing')
ax.legend(handles = fullLeg)
plt.savefig('./plots/PPA/mux.png')
if __name__ == '__main__':
##############################
# set up stuff, global variables
widths = [8, 16, 32, 64, 128]
modules = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop', 'mux2', 'mux4', 'mux8', 'mult'] # 'mux2d', 'mux4d', 'mux8d']
normAddWidth = 32 # divisor to use with N since normalizing to add_32
fitDict = {'add': ['cg', 'l', 'l'], 'mult': ['cg', 'ls', 'ls'], 'comparator': ['cg', 'l', 'l'], 'csa': ['c', 'l', 'l'], 'shiftleft': ['cg', 'l', 'ln'], 'flop': ['c', 'l', 'l'], 'priorityencoder': ['cg', 'l', 'l']}
fitDict.update(dict.fromkeys(['mux2', 'mux4', 'mux8'], ['cg', 'l', 'l']))
leftblue = [] #[['mux2', 'tsmc28', 8], ['mux4', 'sky90', 16]]
TechSpec = namedtuple("TechSpec", "tech color shape delay area lpower denergy")
techSpecs = [['sky90', 'green', 'o', 43.2e-3, 1330.84, 582.81, 520.66], ['tsmc28', 'blue', '^', 12.2e-3, 209.29, 1060, 81.43]]
techSpecs = [TechSpec(*t) for t in techSpecs]
combined = TechSpec('combined fit', 'red', '_', 0, 0, 0, 0)
# invz1arealeakage = [['sky90', 1.96, 1.98], ['gf32', .351, .3116], ['tsmc28', .252, 1.09]] #['gf32', 'purple', 's', 15e-3]
##############################
# cleanup() # run to remove garbage synth runs
# synthsintocsv() # slow, run only when new synth runs to add to csv
allSynths = synthsfromcsv('ppaData.csv') # your csv here!
bestSynths = csvOfBest('bestSynths.csv')
# ### plotting examples
# squareAreaDelay('sky90', 'add', 32)
# oneMetricPlot('add', 'area')
# freqPlot('sky90', 'mux4', 16)
# plotBestAreas('add')
# makeCoefTable()
# calcAvgRsq()
# makeEqTable()
# makeDaLegend()
# muxPlot()
# for mod in modules:
# # plotPPA(mod, norm=False)
# # plotPPA(mod, aleOpt=True)
# for w in widths:
# freqPlot('sky90', mod, w)
# freqPlot('tsmc28', mod, w)
# plt.close('all')