cvw/bin/libppa.pl
2024-07-23 23:29:45 -07:00

258 lines
8.6 KiB
Perl
Executable File

#!/usr/bin/env -S perl -w
###########################################
## libppa.pl
##
## Written: David_Harris@hmc.edu
## Created: 28 January 2023
##
## Purpose: Extract PPA information from Liberty files
## presently characterizes Skywater 90 and TSMC28hpc+
##
## The user will need to change $libpath to point to the desired library in your local installation
## and for TSMC change the $cellname to the actual name of the inverter.
##
## A component of the CORE-V-WALLY configurable RISC-V project.
## https://github.com/openhwgroup/cvw
##
## Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
##
## SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
##
## Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
## except in compliance with the License, or, at your option, the Apache License version 2.0. You
## may obtain a copy of the License at
##
## https:##solderpad.org/licenses/SHL-2.1/
##
## Unless required by applicable law or agreed to in writing, any work distributed under the
## License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
## either express or implied. See the License for the specific language governing permissions
## and limitations under the License.
################################################################################################
use strict;
use warnings;
# global variables for simplicity
my @index1; my @index2;
my @values;
my @cr; my @cf; my @rt; my @ft;
# cell and corners to analyze
my $libpath; my $libbase; my $cellname; my @corners;
# Sky130
$libpath ="$ENV{RISCV}/cad/lib/sky130_osu_sc_t12/12T_ms/lib";
$libbase = "sky130_osu_sc_12T_ms_";
$cellname = "sky130_osu_sc_12T_ms__inv_1";
@corners = ("TT_1P8_25C.ccs", "tt_1P80_25C.ccs", "tt_1P62_25C.ccs", "tt_1P89_25C.ccs", "ss_1P60_-40C.ccs", "ss_1P60_100C.ccs", "ss_1P60_150C.ccs", "ff_1P95_-40C.ccs", "ff_1P95_100C.ccs", "ff_1P95_150C.ccs");
printf("Library $libbase Cell $cellname\n");
foreach my $corner (@corners) {
&analyzeCell($corner);
}
# Sky90
$libpath ="$ENV{RISCV}/cad/lib/sky90/sky90_sc/V1.7.4/lib";
$libbase = "scc9gena_";
$cellname = "scc9gena_inv_1";
@corners = ("tt_1.2v_25C", "tt_1.08v_25C", "tt_1.32v_25C", "tt_1.2v_-40C", "tt_1.2v_85C", "tt_1.2v_125C", "ss_1.2v_25C", "ss_1.08v_-40C", "ss_1.08v_25C", "ss_1.08v_125C", "ff_1.2v_25C", "ff_1.32v_-40C", "ff_1.32v_25C", "ff_1.32v_125C");
printf("Library $libbase Cell $cellname\n");
foreach my $corner (@corners) {
&analyzeCell($corner);
}
# TSMC
$libpath = "/proj/models/tsmc28/libraries/28nmtsmc/tcbn28hpcplusbwp30p140_190a/TSMCHOME/digital/Front_End/timing_power_noise/NLDM/tcbn28hpcplusbwp30p140_180a";
$libbase = "tcbn28hpcplusbwp30p140";
$cellname = "INVD1..."; # replace this with the full name of the library cell
@corners = ("tt0p9v25c", "tt0p8v25c", "tt1v25c", "tt0p9v85c", "ssg0p9vm40c", "ssg0p9v125c", "ssg0p81vm40c", "ssg0p81v125c", "ffg0p88vm40c", "ffg0p88v125c", "ffg0p99vm40c", "ffg0p99v125c");
printf("\nLibrary $libbase Cell $cellname\n");
foreach my $corner (@corners) {
&analyzeCell($corner);
}
#############
# subroutines
#############
sub analyzeCell {
my $corner = shift;
my $fname = $libpath."/".$libbase.$corner.".lib";
open (FILE, $fname) || die("Can't read $fname");
my $incell = 0;
my $inleakage = 0;
my $inpin = 0;
my $incellrise = 0;
my $incellfall = 0;
my $inrisetrans = 0;
my $infalltrans = 0;
my $inindex = 0;
my $invalues = 0;
my $searchstring = "cell (".$cellname.")";
my $area; my $leakage; my $cap;
while (<FILE>) {
if (index($_, $searchstring) != -1) { $incell = 1;}
elsif ($incell) {
if (/cell \(/) {
$incell = 0;
close(FILE);
last;
}
if (/area\s*:\s*(.*);/) { $area = $1; }
if (/cell_leakage_power\s*:\s*(.*);/) { $leakage = $1; $inleakage = 2; }
if ($inleakage == 0 && /leakage_power/) { $inleakage = 1; }
if ($inleakage == 1 && /value\s*:\s*(.*);/) {
$leakage = $1;
$inleakage = 2;
}
if ($inpin == 0 && /pin/) { $inpin = 1; }
if ($inpin == 1 && /\s+capacitance\s*:\s*(.*);/) {
$cap = $1;
$inpin = 2;
}
if ($inindex == 0 && /index_1/) { $inindex = 1; }
if ($inindex == 1) {
if (/index_1\s*\(\"(.*)\"\);/) { @index1 = split(/, /, $1); }
if (/index_2\s*\(\"(.*)\"\);/) { @index2 = split(/, /, $1); $inindex = 2; }
}
if ($incellrise == 0 && /cell_rise/) { $incellrise = 1; $invalues = 0;}
if ($incellfall == 0 && /cell_fall/) { $incellfall = 1; $invalues = 0; }
if ($inrisetrans == 0 && /rise_trans/) { $inrisetrans = 1; $invalues = 0; }
if ($infalltrans == 0 && /fall_trans/) { $infalltrans = 1; $invalues = 0; }
if ($incellrise == 1 || $incellfall == 1 || $inrisetrans == 1 || $infalltrans == 1) {
if (/values/) { $invalues = 1; @values = (); }
elsif ($invalues == 1) {
if (/\);/) {
$invalues = 2;
if ($incellrise == 1) { @cr = &parseVals(); $incellrise = 2; }
if ($incellfall == 1) { @cf = &parseVals(); $incellfall = 2; }
if ($inrisetrans == 1) { @rt = &parseVals(); $inrisetrans = 2; }
if ($infalltrans == 1) { @ft = &parseVals(); $infalltrans = 2; }
}
elsif (/\"(.*)\"/) { push(@values, $1); }
}
}
# print $_;
}
}
my $delay = &computeDelay($cap);
my $cornerr = sprintf("%20s", $corner);
my $delayr = sprintf("%2.1f", $delay*1000);
my $leakager = sprintf("%3.3f", $leakage);
print("$cornerr: Delay $delayr Leakage: $leakager capacitance: $cap\n");
#print("$cellname $corner: Area $area Leakage: $leakage capacitance: $cap delay $delay\n");
#print(" index1: @index1\n");
#print(" index2: @index2\n");
#print("Cell Rise\n"); printMatrix(\@cr);
#print("Cell Fall\n"); printMatrix(\@cf);
#print("Rise Trans\n"); printMatrix(\@rt);
#print("Fall Trans\n"); printMatrix(\@ft);
}
sub computeDelay {
# relies on cr, cf, rt, ft, index1, index2
# index1 for rows of matrix (different trans times, units of ns)
# index2 for cols of matrix (different load capacitances, units of pF)
# first, given true load, create a rise/fall delay and transition
# as a function of trans time, interpolated
my $cap = shift;
my $fo4cap = 4*$cap;
my @cri = &interp2(\@cr, $fo4cap);
my @cfi = &interp2(\@cf, $fo4cap);
my @rti = &interp2(\@rt, $fo4cap);
my @fti = &interp2(\@ft, $fo4cap);
# initially guess second smallest transition time
my $tt = $index1[1];
# assume falling input with this transition, compute rise delay & trans
my $cr0 = &interp1(\@cri, \@index1, $tt);
my $rt0 = &interp1(\@rti, \@index1, $tt);
# now assuming rising input with rt0, compute fall delay & trans
my $cf1 = &interp1(\@cfi, \@index1, $rt0);
my $ft1 = &interp1(\@fti, \@index1, $rt0);
# now assuming falling input with ft1, compute rise delay & trans
my $cr2 = &interp1(\@cri, \@index1, $ft1);
my $rt2 = &interp1(\@rti, \@index1, $ft1);
# now assuming rising input with rt2, compute fall delay & trans
my $cf3 = &interp1(\@cfi, \@index1, $rt2);
my $ft3 = &interp1(\@fti, \@index1, $rt2);
# delay is average of rising and falling
my $delay = ($cr2 + $cf3)/2;
return $delay;
# print("tt $tt cr0 $cr0 rt0 $rt0\n");
# print("cf1 $cf1 ft1 $ft1 cr2 $cr2 rt2 $rt2 cf3 $cf3 ft3 $ft3 delay $delay\n");
}
sub interp2 {
my $matref = shift;
my @matrix = @$matref;
my $fo4cap = shift;
my @interp = ();
my $i;
# interpolate row by row
for ($i=0; $i <= $#index1; $i++) {
my @row = @{$matrix[$i]};
#print ("Extracted row $i = @row\n");
$interp[$i] = &interp1(\@row, \@index2, $fo4cap);
}
return @interp;
}
sub interp1 {
my $vecref = shift;
my @vec = @$vecref;
my $indexref = shift;
my @index = @$indexref;
my $x = shift;
# find entry i containing the first index greater than x
my $i = 0;
while ($index[$i] < $x) {$i++}
my $start = $index[$i-1];
my $end = $index[$i];
my $fract = ($x-$start)/($end-$start);
my $interp = $vec[$i-1] + ($vec[$i] - $vec[$i-1])*$fract;
# print ("Interpolating $x as $interp from i $i start $start end $end based on index @index and vec @vec\n");
return $interp;
}
sub parseVals {
# relies on global variables @values, @index1, @index2
my @vals;
my $i; my $j;
for ($i=0; $i <= $#index1; $i++) {
my @row = split(/, /,$values[$i]);
for ($j = 0; $j <= $#index2; $j++) {
$vals[$i][$j] = $row[$j];
}
}
return @vals;
}
sub printMatrix {
my $mat = shift;
my @matrix = @$mat;
my $i; my $j;
for ($i=0; $i <= $#index1; $i++) {
for ($j = 0; $j <= $#index2; $j++) {
print($matrix[$i][$j]." ");
}
print("\n");
}
}