cvw/src/uncore/spi_apb.sv
2023-11-08 15:20:51 -08:00

505 lines
22 KiB
Systemverilog

///////////////////////////////////////////
// spi_apb.sv
//
// Written: Naiche Whyte-Aguayo nwhyteaguayo@g.hmc.edu 11/16/2022
//
// Purpose: SPI peripheral
// See FU540-C000-v1.0 for specifications
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
// Current limitations: Flash read sequencer mode not implemented, dual and quad modes untestable with current test plan.
// HoldModeDeassert make sure still works
// Comment on FIFOs: watermark calculations
// Comment all interface and internal signals on the lines they are declared
// Get tabs correct so things line up
// Relook at frame compare/ Delay count logic w/o multibit
// look at ReadIncrement/WriteIncrement delay necessity
/*
SPI module is written to the specifications described in FU540-C000-v1.0. At the top level, it is consists of synchronous 8 byte transmit and recieve FIFOs connected to shift registers.
The FIFOs are connected to WALLY by an apb bus control register interface, which includes various control registers for modifying the SPI transmission along with registers for writing
to the transmit FIFO and reading from the receive FIFO. The transmissions themselves are then controlled by a finite state machine. The SPI module uses 4 tristate pins for SPI input/output,
along with a 4 bit Chip Select signal, a clock signal, and an interrupt signal to WALLY.
*/
module spi_apb import cvw::*; #(parameter cvw_t P) (
input logic PCLK, PRESETn,
input logic PSEL,
input logic [7:0] PADDR,
input logic [P.XLEN-1:0] PWDATA,
input logic [P.XLEN/8-1:0] PSTRB,
input logic PWRITE,
input logic PENABLE,
output logic PREADY,
output logic [P.XLEN-1:0] PRDATA,
output logic SPIOut,
input logic SPIIn,
output logic [3:0] SPICS,
output logic SPIIntr
);
//SPI registers
logic [11:0] SckDiv;
logic [1:0] SckMode;
logic [1:0] ChipSelectID;
logic [3:0] ChipSelectDef;
logic [1:0] ChipSelectMode;
logic [15:0] Delay0, Delay1;
logic [4:0] Format;
logic [8:0] ReceiveData;
logic [8:0] ReceiveDataPlaceholder;
logic [2:0] TransmitWatermark, ReceiveWatermark;
logic [8:0] TransmitData;
logic [1:0] InterruptEnable, InterruptPending;
//bus interface signals
logic [7:0] Entry;
logic Memwrite;
logic [31:0] Din, Dout;
//FIFO FSM signals
logic TransmitWriteMark, TransmitReadMark, RecieveWriteMark, RecieveReadMark;
logic TransmitFIFOWriteFull, TransmitFIFOReadEmpty;
logic TransmitFIFOReadIncrement;
logic TransmitFIFOWriteIncrement;
logic ReceiveFIFOReadIncrement;
logic ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty;
logic [7:0] TransmitFIFOReadData, ReceiveFIFOWriteData;
logic [2:0] TransmitWriteWatermarkLevel, ReceiveReadWatermarkLevel;
logic TransmitFIFOReadEmptyDelay;
logic [7:0] ReceiveShiftRegEndian;
//transmission signals
logic sck;
logic [11:0] DivCounter;
logic SCLKenable;
logic [8:0] Delay0Count;
logic [8:0] Delay1Count;
logic Delay0Compare;
logic Delay1Compare;
logic InterCSCompare;
logic [8:0] InterCSCount;
logic InterXFRCompare;
logic [8:0] InterXFRCount;
logic [3:0] ChipSelectInternal;
logic [4:0] FrameCount;
logic [4:0] FrameCompare;
logic FrameCompareBoolean;
logic [4:0] ReceivePenultimateFrame;
logic [4:0] ReceivePenultimateFrameCount;
logic ReceivePenultimateFrameBoolean;
logic [4:0] FrameCompareProtocol;
logic ReceiveShiftFull;
logic TransmitShiftEmpty;
logic HoldModeDeassert;
//state fsm signals
logic Active;
logic Active0;
logic Inactive;
//shift reg signals
logic TransmitFIFOWriteIncrementDelay;
logic sckPhaseSelect;
logic [7:0] TransmitShiftReg;
logic [7:0] ReceiveShiftReg;
logic SampleEdge;
logic [7:0] TransmitDataEndian;
logic TransmitShiftRegLoad;
//CS signals
logic [3:0] ChipSelectAuto, ChipSelectHold, CSoff;
logic ChipSelectHoldSingle;
logic ReceiveShiftFullDelay;
logic SCLKenableDelay;
logic shiftin;
logic [7:0] ReceiveShiftRegInvert;
logic ZeroDelayHoldMode;
logic TransmitInactive;
logic SCLKenableEarly;
logic ReceiveShiftFullDelayPCLK;
logic [3:0] LeftShiftAmount;
logic [7:0] ASR; // AlignedReceiveShiftReg
logic DelayMode;
logic [3:0] PWChipSelect;
// APB access
assign Entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses
assign Memwrite = PWRITE & PENABLE & PSEL; // only write in access phase
assign PREADY = TransmitInactive; // tie PREADY to transmission for hardware interlock
// account for subword read/write circuitry
// -- Note SPI registers are 32 bits no matter what; access them with LW SW.
assign Din = PWDATA[31:0];
if (P.XLEN == 64) assign PRDATA = {Dout, Dout};
else assign PRDATA = Dout;
// register access *** clean this up
always_ff@(posedge PCLK, negedge PRESETn)
if (~PRESETn) begin
SckDiv <= #1 12'd3;
SckMode <= #1 2'b0;
ChipSelectID <= #1 2'b0;
ChipSelectDef <= #1 4'b1111;
ChipSelectMode <= #1 0;
Delay0 <= #1 {8'b1,8'b1};
Delay1 <= #1 {8'b0,8'b1};
Format <= #1 {5'b10000};
TransmitData <= #1 9'b0;
TransmitWatermark <= #1 3'b0;
ReceiveWatermark <= #1 3'b0;
InterruptEnable <= #1 2'b0;
InterruptPending <= #1 2'b0;
end else begin //writes
//According to FU540 spec: Once interrupt is pending, it will remain set until number
//of entries in tx/rx fifo is strictly more/less than tx/rxmark
/* verilator lint_off CASEINCOMPLETE */
if (Memwrite & TransmitInactive)
case(Entry) //flop to sample inputs
8'h00: SckDiv <= Din[11:0];
8'h04: SckMode <= Din[1:0];
8'h10: ChipSelectID <= Din[1:0];
8'h14: ChipSelectDef <= Din[3:0];
8'h18: ChipSelectMode <= Din[1:0];
8'h28: Delay0 <= {Din[23:16], Din[7:0]};
8'h2C: Delay1 <= {Din[23:16], Din[7:0]};
8'h40: Format <= {Din[19:16], Din[2]};
8'h48: if (~TransmitFIFOWriteFull) TransmitData[7:0] <= Din[7:0];
8'h50: TransmitWatermark <= Din[2:0];
8'h54: ReceiveWatermark <= Din[2:0];
8'h70: InterruptEnable <= Din[1:0];
endcase
/* verilator lint_off CASEINCOMPLETE */
//interrupt clearance
InterruptPending[0] <= TransmitReadMark;
InterruptPending[1] <= RecieveWriteMark;
case(Entry) // flop to sample inputs
8'h00: Dout <= #1 {20'b0, SckDiv};
8'h04: Dout <= #1 {30'b0, SckMode};
8'h10: Dout <= #1 {30'b0, ChipSelectID};
8'h14: Dout <= #1 {28'b0, ChipSelectDef};
8'h18: Dout <= #1 {30'b0, ChipSelectMode};
8'h28: Dout <= {8'b0, Delay0[15:8], 8'b0, Delay0[7:0]};
8'h2C: Dout <= {8'b0, Delay1[15:8], 8'b0, Delay1[7:0]};
8'h40: Dout <= {12'b0, Format[4:1], 13'b0, Format[0], 2'b0};
8'h48: Dout <= #1 {23'b0, TransmitFIFOWriteFull, 8'b0};
8'h4C: Dout <= #1 {23'b0, ReceiveFIFOReadEmpty, ReceiveData[7:0]};
8'h50: Dout <= #1 {29'b0, TransmitWatermark};
8'h54: Dout <= #1 {29'b0, ReceiveWatermark};
8'h70: Dout <= #1 {30'b0, InterruptEnable};
8'h74: Dout <= #1 {30'b0, InterruptPending};
default: Dout <= #1 32'b0;
endcase
end
// SPI enable generation, where SCLK = PCLK/(2*(SckDiv + 1))
// generates a high signal at the rising and falling edge of SCLK by counting from 0 to SckDiv
assign SCLKenable = (DivCounter == SckDiv);
assign SCLKenableEarly = ((DivCounter + 12'b1) == SckDiv);
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) DivCounter <= #1 0;
else if (SCLKenable) DivCounter <= 0;
else DivCounter <= DivCounter + 12'b1;
//Boolean logic that tracks frame progression
assign FrameCompare = {1'b0,Format[4:1]};
assign FrameCompareBoolean = (FrameCount < FrameCompare);
assign ReceivePenultimateFrameCount = FrameCount + 5'b00001;
assign ReceivePenultimateFrameBoolean = (ReceivePenultimateFrameCount >= FrameCompare);
// Computing delays
// When sckmode.pha = 0, an extra half-period delay is implicit in the cs-sck delay, and vice-versa for sck-cs
assign Delay0Compare = SckMode[0] ? (Delay0Count >= ({Delay0[7:0], 1'b0})) : (Delay0Count >= ({Delay0[7:0], 1'b0} + 9'b1));
assign Delay1Compare = SckMode[0] ? (Delay1Count >= (({Delay0[15:8], 1'b0}) + 9'b1)) : (Delay1Count >= ({Delay0[15:8], 1'b0}));
assign InterCSCompare = (InterCSCount >= ({Delay1[7:0],1'b0}));
assign InterXFRCompare = (InterXFRCount >= ({Delay1[15:8], 1'b0}));
//calculate when tx/rx shift registers are full/empty
TransmitShiftFSM TransmitShiftFSM_1 (PCLK, PRESETn, TransmitFIFOReadEmpty, ReceivePenultimateFrameBoolean, Active0, TransmitShiftEmpty);
ReceiveShiftFSM ReceiveShiftFSM_1 (PCLK, PRESETn, SCLKenable, ReceivePenultimateFrameBoolean, SampleEdge, SckMode[0], ReceiveShiftFull);
//calculate tx/rx fifo write and recieve increment signals
assign TransmitFIFOWriteIncrement = (Memwrite & (Entry == 8'h48) & ~TransmitFIFOWriteFull & TransmitInactive);
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) TransmitFIFOWriteIncrementDelay <= 0;
else TransmitFIFOWriteIncrementDelay <= TransmitFIFOWriteIncrement;
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) ReceiveFIFOReadIncrement <= 0;
else ReceiveFIFOReadIncrement <= ((Entry == 8'h4C) & ~ReceiveFIFOReadEmpty & PSEL & ~ReceiveFIFOReadIncrement);
//tx/rx FIFOs
SynchFIFO #(3,8) txFIFO(PCLK, 1'b1, SCLKenable, PRESETn, TransmitFIFOWriteIncrementDelay, TransmitShiftEmpty, TransmitData[7:0], TransmitWriteWatermarkLevel, TransmitWatermark[2:0], TransmitFIFOReadData[7:0], TransmitFIFOWriteFull, TransmitFIFOReadEmpty, TransmitWriteMark, TransmitReadMark);
SynchFIFO #(3,8) rxFIFO(PCLK, SCLKenable, 1'b1, PRESETn, ReceiveShiftFullDelay, ReceiveFIFOReadIncrement, ReceiveShiftRegEndian, ReceiveWatermark[2:0], ReceiveReadWatermarkLevel, ReceiveData[7:0], ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty, RecieveWriteMark, RecieveReadMark);
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) TransmitFIFOReadEmptyDelay <= 1;
else if (SCLKenable) TransmitFIFOReadEmptyDelay <= TransmitFIFOReadEmpty;
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) ReceiveShiftFullDelay <= 0;
else if (SCLKenable) ReceiveShiftFullDelay <= ReceiveShiftFull;
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) ReceiveShiftFullDelayPCLK <= 0;
else if (SCLKenableEarly) ReceiveShiftFullDelayPCLK <= ReceiveShiftFull;
assign TransmitShiftRegLoad = ~TransmitShiftEmpty & ~Active | (((ChipSelectMode == 2'b10) & ~|(Delay1[15:8])) & ((ReceiveShiftFullDelay | ReceiveShiftFull) & ~SampleEdge & ~TransmitFIFOReadEmpty));
//Main FSM which controls SPI transmission
typedef enum logic [2:0] {CS_INACTIVE, DELAY_0, ACTIVE_0, ACTIVE_1, DELAY_1,INTER_CS, INTER_XFR} statetype;
statetype state;
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) begin state <= CS_INACTIVE;
FrameCount <= 5'b0;
/* verilator lint_off CASEINCOMPLETE */
end else if (SCLKenable) begin
case (state)
CS_INACTIVE: begin
Delay0Count <= 9'b1;
Delay1Count <= 9'b10;
FrameCount <= 5'b0;
InterCSCount <= 9'b10;
InterXFRCount <= 9'b1;
if ((~TransmitFIFOReadEmpty | ~TransmitShiftEmpty) & ((|(Delay0[7:0])) | ~SckMode[0])) state <= DELAY_0;
else if ((~TransmitFIFOReadEmpty | ~TransmitShiftEmpty)) state <= ACTIVE_0;
end
DELAY_0: begin
Delay0Count <= Delay0Count + 9'b1;
if (Delay0Compare) state <= ACTIVE_0;
end
ACTIVE_0: begin
FrameCount <= FrameCount + 5'b1;
state <= ACTIVE_1;
end
ACTIVE_1: begin
InterXFRCount <= 9'b1;
if (FrameCompareBoolean) state <= ACTIVE_0;
else if ((ChipSelectMode[1:0] == 2'b10) & ~|(Delay1[15:8]) & (~TransmitFIFOReadEmpty)) begin
state <= ACTIVE_0;
Delay0Count <= 9'b1;
Delay1Count <= 9'b10;
FrameCount <= 5'b0;
InterCSCount <= 9'b10;
end
else if (ChipSelectMode[1:0] == 2'b10) state <= INTER_XFR;
else if (~|(Delay0[15:8]) & (~SckMode[0])) state <= INTER_CS;
else state <= DELAY_1;
end
DELAY_1: begin
Delay1Count <= Delay1Count + 9'b1;
if (Delay1Compare) state <= INTER_CS;
end
INTER_CS: begin
InterCSCount <= InterCSCount + 9'b1;
if (InterCSCompare ) state <= CS_INACTIVE;
end
INTER_XFR: begin
Delay0Count <= 9'b1;
Delay1Count <= 9'b10;
FrameCount <= 5'b0;
InterCSCount <= 9'b10;
InterXFRCount <= InterXFRCount + 9'b1;
if (InterXFRCompare & ~TransmitFIFOReadEmptyDelay) state <= ACTIVE_0;
else if (~|ChipSelectMode[1:0]) state <= CS_INACTIVE;
end
endcase
end
/* verilator lint_off CASEINCOMPLETE */
assign DelayMode = SckMode[0] ? (state == DELAY_1) : (state == ACTIVE_1 & ReceiveShiftFull);
assign ChipSelectInternal = (state == CS_INACTIVE | state == INTER_CS | DelayMode & ~|(Delay0[15:8])) ? ChipSelectDef : ~ChipSelectDef;
assign sck = (state == ACTIVE_0) ? ~SckMode[1] : SckMode[1];
assign Active = (state == ACTIVE_0 | state == ACTIVE_1);
assign SampleEdge = SckMode[0] ? (state == ACTIVE_1) : (state == ACTIVE_0);
assign ZeroDelayHoldMode = ((ChipSelectMode == 2'b10) & (~|(Delay1[7:4])));
assign TransmitInactive = ((state == INTER_CS) | (state == CS_INACTIVE) | (state == INTER_XFR) | (ReceiveShiftFullDelayPCLK & ZeroDelayHoldMode));
assign Active0 = (state == ACTIVE_0);
assign Inactive = (state == CS_INACTIVE);
// Signal tracks which edge of sck to shift data
always_comb
case(SckMode[1:0])
2'b00: sckPhaseSelect = ~sck & SCLKenable;
2'b01: sckPhaseSelect = (sck & |(FrameCount) & SCLKenable);
2'b10: sckPhaseSelect = sck & SCLKenable;
2'b11: sckPhaseSelect = (~sck & |(FrameCount) & SCLKenable);
default: sckPhaseSelect = sck & SCLKenable;
endcase
//Transmit shift register
assign TransmitDataEndian = Format[0] ? {TransmitFIFOReadData[0], TransmitFIFOReadData[1], TransmitFIFOReadData[2], TransmitFIFOReadData[3], TransmitFIFOReadData[4], TransmitFIFOReadData[5], TransmitFIFOReadData[6], TransmitFIFOReadData[7]} : TransmitFIFOReadData[7:0];
always_ff @(posedge PCLK, negedge PRESETn)
if(~PRESETn) TransmitShiftReg <= 8'b0;
else if (TransmitShiftRegLoad) TransmitShiftReg <= TransmitDataEndian;
else if (sckPhaseSelect & Active) TransmitShiftReg <= {TransmitShiftReg[6:0], 1'b0};
assign SPIOut = TransmitShiftReg[7];
//If in loopback mode, receive shift register is connected directly to module's output pins. Else, connected to SPIIn
//There are no setup/hold time issues because transmit shift register and receive shift register always shift/sample on opposite edges
assign shiftin = P.SPI_LOOPBACK_TEST ? SPIOut : SPIIn;
// Receive shift register
always_ff @(posedge PCLK, negedge PRESETn)
if(~PRESETn) ReceiveShiftReg <= 8'b0;
else if (SampleEdge & SCLKenable) begin
if (~Active) ReceiveShiftReg <= 8'b0;
else ReceiveShiftReg <= {ReceiveShiftReg[6:0], shiftin};
end
// Aligns received data and reverses if little-endian
assign LeftShiftAmount = 4'h8 - Format[4:1];
assign ASR = ReceiveShiftReg << LeftShiftAmount[2:0];
assign ReceiveShiftRegEndian = Format[0] ? {ASR[0], ASR[1], ASR[2], ASR[3], ASR[4], ASR[5], ASR[6], ASR[7]} : ASR[7:0];
// Interrupt logic: raise interrupt if any enabled interrupts are pending
assign SPIIntr = |(InterruptPending & InterruptEnable);
// Chip select logic
always_comb
case(ChipSelectID[1:0])
2'b00: ChipSelectAuto = {ChipSelectDef[3], ChipSelectDef[2], ChipSelectDef[1], ChipSelectInternal[0]};
2'b01: ChipSelectAuto = {ChipSelectDef[3],ChipSelectDef[2], ChipSelectInternal[1], ChipSelectDef[0]};
2'b10: ChipSelectAuto = {ChipSelectDef[3],ChipSelectInternal[2], ChipSelectDef[1], ChipSelectDef[0]};
2'b11: ChipSelectAuto = {ChipSelectInternal[3],ChipSelectDef[2], ChipSelectDef[1], ChipSelectDef[0]};
endcase
assign SPICS = ChipSelectMode[0] ? ChipSelectDef : ChipSelectAuto;
endmodule
module SynchFIFO #(parameter M =3 , N= 8)(
input logic PCLK, wen, ren, PRESETn,
input logic winc,rinc,
input logic [N-1:0] wdata,
input logic [M-1:0] wwatermarklevel, rwatermarklevel,
output logic [N-1:0] rdata,
output logic wfull, rempty,
output logic wwatermark, rwatermark);
logic [N-1:0] mem[2**M];
logic [M:0] rptr, wptr;
logic [M:0] rptrnext, wptrnext;
logic rempty_val;
logic wfull_val;
logic [M-1:0] raddr;
logic [M-1:0] waddr;
assign rdata = mem[raddr];
always_ff @(posedge PCLK)
if (winc & ~wfull) mem[waddr] <= wdata;
// write and read are enabled
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) begin
rptr <= 0;
wptr <= 0;
wfull <= 1'b0;
rempty <= 1'b1;
end
else begin
if (wen) begin
wfull <= wfull_val;
wptr <= wptrnext;
end
if (ren) begin
rptr <= rptrnext;
rempty <= rempty_val;
end
end
assign raddr = rptr[M-1:0];
assign rptrnext = rptr + {3'b0, (rinc & ~rempty)};
assign rempty_val = (wptr == rptrnext);
assign rwatermark = ((waddr - raddr) < rwatermarklevel) & ~wfull;
assign waddr = wptr[M-1:0];
assign wwatermark = ((waddr - raddr) > wwatermarklevel) | wfull;
assign wptrnext = wptr + {3'b0, (winc & ~wfull)};
assign wfull_val = ({~wptrnext[M], wptrnext[M-1:0]} == rptr);
endmodule
module TransmitShiftFSM(
input logic PCLK, PRESETn,
input logic TransmitFIFOReadEmpty, ReceivePenultimateFrameBoolean, Active0,
output logic TransmitShiftEmpty);
typedef enum logic [1:0] {TransmitShiftEmptyState, TransmitShiftHoldState, TransmitShiftNotEmptyState} statetype;
statetype TransmitState, TransmitNextState;
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) TransmitState <= TransmitShiftEmptyState;
else TransmitState <= TransmitNextState;
always_comb
case(TransmitState)
TransmitShiftEmptyState: begin
if (TransmitFIFOReadEmpty | (~TransmitFIFOReadEmpty & (ReceivePenultimateFrameBoolean & Active0))) TransmitNextState = TransmitShiftEmptyState;
else if (~TransmitFIFOReadEmpty) TransmitNextState = TransmitShiftNotEmptyState;
end
TransmitShiftNotEmptyState: begin
if (ReceivePenultimateFrameBoolean & Active0) TransmitNextState = TransmitShiftEmptyState;
else TransmitNextState = TransmitShiftNotEmptyState;
end
endcase
assign TransmitShiftEmpty = (TransmitNextState == TransmitShiftEmptyState);
endmodule
module ReceiveShiftFSM(
input logic PCLK, PRESETn, SCLKenable,
input logic ReceivePenultimateFrameBoolean, SampleEdge, SckMode,
output logic ReceiveShiftFull
);
typedef enum logic [1:0] {ReceiveShiftFullState, ReceiveShiftNotFullState, ReceiveShiftDelayState} statetype;
statetype ReceiveState, ReceiveNextState;
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) ReceiveState <= ReceiveShiftNotFullState;
else if (SCLKenable) begin
case (ReceiveState)
ReceiveShiftFullState: ReceiveState <= ReceiveShiftNotFullState;
ReceiveShiftNotFullState: if (ReceivePenultimateFrameBoolean & (SampleEdge)) ReceiveState <= ReceiveShiftDelayState;
else ReceiveState <= ReceiveShiftNotFullState;
ReceiveShiftDelayState: ReceiveState <= ReceiveShiftFullState;
endcase
end
assign ReceiveShiftFull = SckMode ? (ReceiveState == ReceiveShiftFullState) : (ReceiveState == ReceiveShiftDelayState);
endmodule