/////////////////////////////////////////// // spi_apb.sv // // Written: Naiche Whyte-Aguayo nwhyteaguayo@g.hmc.edu 11/16/2022 // // Purpose: SPI peripheral // See FU540-C000-v1.0 for specifications // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// // Current limitations: Flash read sequencer mode not implemented, dual and quad modes untestable with current test plan. // HoldModeDeassert make sure still works // Comment on FIFOs: watermark calculations // Comment all interface and internal signals on the lines they are declared // Get tabs correct so things line up // Relook at frame compare/ Delay count logic w/o multibit // look at ReadIncrement/WriteIncrement delay necessity /* SPI module is written to the specifications described in FU540-C000-v1.0. At the top level, it is consists of synchronous 8 byte transmit and recieve FIFOs connected to shift registers. The FIFOs are connected to WALLY by an apb bus control register interface, which includes various control registers for modifying the SPI transmission along with registers for writing to the transmit FIFO and reading from the receive FIFO. The transmissions themselves are then controlled by a finite state machine. The SPI module uses 4 tristate pins for SPI input/output, along with a 4 bit Chip Select signal, a clock signal, and an interrupt signal to WALLY. */ module spi_apb import cvw::*; #(parameter cvw_t P) ( input logic PCLK, PRESETn, input logic PSEL, input logic [7:0] PADDR, input logic [P.XLEN-1:0] PWDATA, input logic [P.XLEN/8-1:0] PSTRB, input logic PWRITE, input logic PENABLE, output logic PREADY, output logic [P.XLEN-1:0] PRDATA, output logic SPIOut, input logic SPIIn, output logic [3:0] SPICS, output logic SPIIntr ); //SPI registers logic [11:0] SckDiv; logic [1:0] SckMode; logic [1:0] ChipSelectID; logic [3:0] ChipSelectDef; logic [1:0] ChipSelectMode; logic [15:0] Delay0, Delay1; logic [4:0] Format; logic [8:0] ReceiveData; logic [8:0] ReceiveDataPlaceholder; logic [2:0] TransmitWatermark, ReceiveWatermark; logic [8:0] TransmitData; logic [1:0] InterruptEnable, InterruptPending; //bus interface signals logic [7:0] Entry; logic Memwrite; logic [31:0] Din, Dout; //FIFO FSM signals logic TransmitWriteMark, TransmitReadMark, RecieveWriteMark, RecieveReadMark; logic TransmitFIFOWriteFull, TransmitFIFOReadEmpty; logic TransmitFIFOReadIncrement; logic TransmitFIFOWriteIncrement; logic ReceiveFIFOReadIncrement; logic ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty; logic [7:0] TransmitFIFOReadData, ReceiveFIFOWriteData; logic [2:0] TransmitWriteWatermarkLevel, ReceiveReadWatermarkLevel; logic TransmitFIFOReadEmptyDelay; logic [7:0] ReceiveShiftRegEndian; //transmission signals logic sck; logic [11:0] DivCounter; logic SCLKenable; logic [8:0] Delay0Count; logic [8:0] Delay1Count; logic Delay0Compare; logic Delay1Compare; logic InterCSCompare; logic [8:0] InterCSCount; logic InterXFRCompare; logic [8:0] InterXFRCount; logic [3:0] ChipSelectInternal; logic [4:0] FrameCount; logic [4:0] FrameCompare; logic FrameCompareBoolean; logic [4:0] ReceivePenultimateFrame; logic [4:0] ReceivePenultimateFrameCount; logic ReceivePenultimateFrameBoolean; logic [4:0] FrameCompareProtocol; logic ReceiveShiftFull; logic TransmitShiftEmpty; logic HoldModeDeassert; //state fsm signals logic Active; logic Active0; logic Inactive; //shift reg signals logic TransmitFIFOWriteIncrementDelay; logic sckPhaseSelect; logic [7:0] TransmitShiftReg; logic [7:0] ReceiveShiftReg; logic SampleEdge; logic [7:0] TransmitDataEndian; logic TransmitShiftRegLoad; //CS signals logic [3:0] ChipSelectAuto, ChipSelectHold, CSoff; logic ChipSelectHoldSingle; logic ReceiveShiftFullDelay; logic SCLKenableDelay; logic shiftin; logic [7:0] ReceiveShiftRegInvert; logic ZeroDelayHoldMode; logic TransmitInactive; logic SCLKenableEarly; logic ReceiveShiftFullDelayPCLK; logic [3:0] LeftShiftAmount; logic [7:0] ASR; // AlignedReceiveShiftReg logic DelayMode; logic [3:0] PWChipSelect; // APB access assign Entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses assign Memwrite = PWRITE & PENABLE & PSEL; // only write in access phase assign PREADY = TransmitInactive; // tie PREADY to transmission for hardware interlock // account for subword read/write circuitry // -- Note SPI registers are 32 bits no matter what; access them with LW SW. assign Din = PWDATA[31:0]; if (P.XLEN == 64) assign PRDATA = {Dout, Dout}; else assign PRDATA = Dout; // register access *** clean this up always_ff@(posedge PCLK, negedge PRESETn) if (~PRESETn) begin SckDiv <= #1 12'd3; SckMode <= #1 2'b0; ChipSelectID <= #1 2'b0; ChipSelectDef <= #1 4'b1111; ChipSelectMode <= #1 0; Delay0 <= #1 {8'b1,8'b1}; Delay1 <= #1 {8'b0,8'b1}; Format <= #1 {5'b10000}; TransmitData <= #1 9'b0; TransmitWatermark <= #1 3'b0; ReceiveWatermark <= #1 3'b0; InterruptEnable <= #1 2'b0; InterruptPending <= #1 2'b0; end else begin //writes //According to FU540 spec: Once interrupt is pending, it will remain set until number //of entries in tx/rx fifo is strictly more/less than tx/rxmark /* verilator lint_off CASEINCOMPLETE */ if (Memwrite & TransmitInactive) case(Entry) //flop to sample inputs 8'h00: SckDiv <= Din[11:0]; 8'h04: SckMode <= Din[1:0]; 8'h10: ChipSelectID <= Din[1:0]; 8'h14: ChipSelectDef <= Din[3:0]; 8'h18: ChipSelectMode <= Din[1:0]; 8'h28: Delay0 <= {Din[23:16], Din[7:0]}; 8'h2C: Delay1 <= {Din[23:16], Din[7:0]}; 8'h40: Format <= {Din[19:16], Din[2]}; 8'h48: if (~TransmitFIFOWriteFull) TransmitData[7:0] <= Din[7:0]; 8'h50: TransmitWatermark <= Din[2:0]; 8'h54: ReceiveWatermark <= Din[2:0]; 8'h70: InterruptEnable <= Din[1:0]; endcase /* verilator lint_off CASEINCOMPLETE */ //interrupt clearance InterruptPending[0] <= TransmitReadMark; InterruptPending[1] <= RecieveWriteMark; case(Entry) // flop to sample inputs 8'h00: Dout <= #1 {20'b0, SckDiv}; 8'h04: Dout <= #1 {30'b0, SckMode}; 8'h10: Dout <= #1 {30'b0, ChipSelectID}; 8'h14: Dout <= #1 {28'b0, ChipSelectDef}; 8'h18: Dout <= #1 {30'b0, ChipSelectMode}; 8'h28: Dout <= {8'b0, Delay0[15:8], 8'b0, Delay0[7:0]}; 8'h2C: Dout <= {8'b0, Delay1[15:8], 8'b0, Delay1[7:0]}; 8'h40: Dout <= {12'b0, Format[4:1], 13'b0, Format[0], 2'b0}; 8'h48: Dout <= #1 {23'b0, TransmitFIFOWriteFull, 8'b0}; 8'h4C: Dout <= #1 {23'b0, ReceiveFIFOReadEmpty, ReceiveData[7:0]}; 8'h50: Dout <= #1 {29'b0, TransmitWatermark}; 8'h54: Dout <= #1 {29'b0, ReceiveWatermark}; 8'h70: Dout <= #1 {30'b0, InterruptEnable}; 8'h74: Dout <= #1 {30'b0, InterruptPending}; default: Dout <= #1 32'b0; endcase end // SPI enable generation, where SCLK = PCLK/(2*(SckDiv + 1)) // generates a high signal at the rising and falling edge of SCLK by counting from 0 to SckDiv assign SCLKenable = (DivCounter == SckDiv); assign SCLKenableEarly = ((DivCounter + 12'b1) == SckDiv); always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) DivCounter <= #1 0; else if (SCLKenable) DivCounter <= 0; else DivCounter <= DivCounter + 12'b1; //Boolean logic that tracks frame progression assign FrameCompare = {1'b0,Format[4:1]}; assign FrameCompareBoolean = (FrameCount < FrameCompare); assign ReceivePenultimateFrameCount = FrameCount + 5'b00001; assign ReceivePenultimateFrameBoolean = (ReceivePenultimateFrameCount >= FrameCompare); // Computing delays // When sckmode.pha = 0, an extra half-period delay is implicit in the cs-sck delay, and vice-versa for sck-cs assign Delay0Compare = SckMode[0] ? (Delay0Count >= ({Delay0[7:0], 1'b0})) : (Delay0Count >= ({Delay0[7:0], 1'b0} + 9'b1)); assign Delay1Compare = SckMode[0] ? (Delay1Count >= (({Delay0[15:8], 1'b0}) + 9'b1)) : (Delay1Count >= ({Delay0[15:8], 1'b0})); assign InterCSCompare = (InterCSCount >= ({Delay1[7:0],1'b0})); assign InterXFRCompare = (InterXFRCount >= ({Delay1[15:8], 1'b0})); //calculate when tx/rx shift registers are full/empty TransmitShiftFSM TransmitShiftFSM_1 (PCLK, PRESETn, TransmitFIFOReadEmpty, ReceivePenultimateFrameBoolean, Active0, TransmitShiftEmpty); ReceiveShiftFSM ReceiveShiftFSM_1 (PCLK, PRESETn, SCLKenable, ReceivePenultimateFrameBoolean, SampleEdge, SckMode[0], ReceiveShiftFull); //calculate tx/rx fifo write and recieve increment signals assign TransmitFIFOWriteIncrement = (Memwrite & (Entry == 8'h48) & ~TransmitFIFOWriteFull & TransmitInactive); always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) TransmitFIFOWriteIncrementDelay <= 0; else TransmitFIFOWriteIncrementDelay <= TransmitFIFOWriteIncrement; always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) ReceiveFIFOReadIncrement <= 0; else ReceiveFIFOReadIncrement <= ((Entry == 8'h4C) & ~ReceiveFIFOReadEmpty & PSEL & ~ReceiveFIFOReadIncrement); //tx/rx FIFOs SynchFIFO #(3,8) txFIFO(PCLK, 1'b1, SCLKenable, PRESETn, TransmitFIFOWriteIncrementDelay, TransmitShiftEmpty, TransmitData[7:0], TransmitWriteWatermarkLevel, TransmitWatermark[2:0], TransmitFIFOReadData[7:0], TransmitFIFOWriteFull, TransmitFIFOReadEmpty, TransmitWriteMark, TransmitReadMark); SynchFIFO #(3,8) rxFIFO(PCLK, SCLKenable, 1'b1, PRESETn, ReceiveShiftFullDelay, ReceiveFIFOReadIncrement, ReceiveShiftRegEndian, ReceiveWatermark[2:0], ReceiveReadWatermarkLevel, ReceiveData[7:0], ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty, RecieveWriteMark, RecieveReadMark); always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) TransmitFIFOReadEmptyDelay <= 1; else if (SCLKenable) TransmitFIFOReadEmptyDelay <= TransmitFIFOReadEmpty; always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) ReceiveShiftFullDelay <= 0; else if (SCLKenable) ReceiveShiftFullDelay <= ReceiveShiftFull; always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) ReceiveShiftFullDelayPCLK <= 0; else if (SCLKenableEarly) ReceiveShiftFullDelayPCLK <= ReceiveShiftFull; assign TransmitShiftRegLoad = ~TransmitShiftEmpty & ~Active | (((ChipSelectMode == 2'b10) & ~|(Delay1[15:8])) & ((ReceiveShiftFullDelay | ReceiveShiftFull) & ~SampleEdge & ~TransmitFIFOReadEmpty)); //Main FSM which controls SPI transmission typedef enum logic [2:0] {CS_INACTIVE, DELAY_0, ACTIVE_0, ACTIVE_1, DELAY_1,INTER_CS, INTER_XFR} statetype; statetype state; always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) begin state <= CS_INACTIVE; FrameCount <= 5'b0; /* verilator lint_off CASEINCOMPLETE */ end else if (SCLKenable) begin case (state) CS_INACTIVE: begin Delay0Count <= 9'b1; Delay1Count <= 9'b10; FrameCount <= 5'b0; InterCSCount <= 9'b10; InterXFRCount <= 9'b1; if ((~TransmitFIFOReadEmpty | ~TransmitShiftEmpty) & ((|(Delay0[7:0])) | ~SckMode[0])) state <= DELAY_0; else if ((~TransmitFIFOReadEmpty | ~TransmitShiftEmpty)) state <= ACTIVE_0; end DELAY_0: begin Delay0Count <= Delay0Count + 9'b1; if (Delay0Compare) state <= ACTIVE_0; end ACTIVE_0: begin FrameCount <= FrameCount + 5'b1; state <= ACTIVE_1; end ACTIVE_1: begin InterXFRCount <= 9'b1; if (FrameCompareBoolean) state <= ACTIVE_0; else if ((ChipSelectMode[1:0] == 2'b10) & ~|(Delay1[15:8]) & (~TransmitFIFOReadEmpty)) begin state <= ACTIVE_0; Delay0Count <= 9'b1; Delay1Count <= 9'b10; FrameCount <= 5'b0; InterCSCount <= 9'b10; end else if (ChipSelectMode[1:0] == 2'b10) state <= INTER_XFR; else if (~|(Delay0[15:8]) & (~SckMode[0])) state <= INTER_CS; else state <= DELAY_1; end DELAY_1: begin Delay1Count <= Delay1Count + 9'b1; if (Delay1Compare) state <= INTER_CS; end INTER_CS: begin InterCSCount <= InterCSCount + 9'b1; if (InterCSCompare ) state <= CS_INACTIVE; end INTER_XFR: begin Delay0Count <= 9'b1; Delay1Count <= 9'b10; FrameCount <= 5'b0; InterCSCount <= 9'b10; InterXFRCount <= InterXFRCount + 9'b1; if (InterXFRCompare & ~TransmitFIFOReadEmptyDelay) state <= ACTIVE_0; else if (~|ChipSelectMode[1:0]) state <= CS_INACTIVE; end endcase end /* verilator lint_off CASEINCOMPLETE */ assign DelayMode = SckMode[0] ? (state == DELAY_1) : (state == ACTIVE_1 & ReceiveShiftFull); assign ChipSelectInternal = (state == CS_INACTIVE | state == INTER_CS | DelayMode & ~|(Delay0[15:8])) ? ChipSelectDef : ~ChipSelectDef; assign sck = (state == ACTIVE_0) ? ~SckMode[1] : SckMode[1]; assign Active = (state == ACTIVE_0 | state == ACTIVE_1); assign SampleEdge = SckMode[0] ? (state == ACTIVE_1) : (state == ACTIVE_0); assign ZeroDelayHoldMode = ((ChipSelectMode == 2'b10) & (~|(Delay1[7:4]))); assign TransmitInactive = ((state == INTER_CS) | (state == CS_INACTIVE) | (state == INTER_XFR) | (ReceiveShiftFullDelayPCLK & ZeroDelayHoldMode)); assign Active0 = (state == ACTIVE_0); assign Inactive = (state == CS_INACTIVE); // Signal tracks which edge of sck to shift data always_comb case(SckMode[1:0]) 2'b00: sckPhaseSelect = ~sck & SCLKenable; 2'b01: sckPhaseSelect = (sck & |(FrameCount) & SCLKenable); 2'b10: sckPhaseSelect = sck & SCLKenable; 2'b11: sckPhaseSelect = (~sck & |(FrameCount) & SCLKenable); default: sckPhaseSelect = sck & SCLKenable; endcase //Transmit shift register assign TransmitDataEndian = Format[0] ? {TransmitFIFOReadData[0], TransmitFIFOReadData[1], TransmitFIFOReadData[2], TransmitFIFOReadData[3], TransmitFIFOReadData[4], TransmitFIFOReadData[5], TransmitFIFOReadData[6], TransmitFIFOReadData[7]} : TransmitFIFOReadData[7:0]; always_ff @(posedge PCLK, negedge PRESETn) if(~PRESETn) TransmitShiftReg <= 8'b0; else if (TransmitShiftRegLoad) TransmitShiftReg <= TransmitDataEndian; else if (sckPhaseSelect & Active) TransmitShiftReg <= {TransmitShiftReg[6:0], 1'b0}; assign SPIOut = TransmitShiftReg[7]; //If in loopback mode, receive shift register is connected directly to module's output pins. Else, connected to SPIIn //There are no setup/hold time issues because transmit shift register and receive shift register always shift/sample on opposite edges assign shiftin = P.SPI_LOOPBACK_TEST ? SPIOut : SPIIn; // Receive shift register always_ff @(posedge PCLK, negedge PRESETn) if(~PRESETn) ReceiveShiftReg <= 8'b0; else if (SampleEdge & SCLKenable) begin if (~Active) ReceiveShiftReg <= 8'b0; else ReceiveShiftReg <= {ReceiveShiftReg[6:0], shiftin}; end // Aligns received data and reverses if little-endian assign LeftShiftAmount = 4'h8 - Format[4:1]; assign ASR = ReceiveShiftReg << LeftShiftAmount[2:0]; assign ReceiveShiftRegEndian = Format[0] ? {ASR[0], ASR[1], ASR[2], ASR[3], ASR[4], ASR[5], ASR[6], ASR[7]} : ASR[7:0]; // Interrupt logic: raise interrupt if any enabled interrupts are pending assign SPIIntr = |(InterruptPending & InterruptEnable); // Chip select logic always_comb case(ChipSelectID[1:0]) 2'b00: ChipSelectAuto = {ChipSelectDef[3], ChipSelectDef[2], ChipSelectDef[1], ChipSelectInternal[0]}; 2'b01: ChipSelectAuto = {ChipSelectDef[3],ChipSelectDef[2], ChipSelectInternal[1], ChipSelectDef[0]}; 2'b10: ChipSelectAuto = {ChipSelectDef[3],ChipSelectInternal[2], ChipSelectDef[1], ChipSelectDef[0]}; 2'b11: ChipSelectAuto = {ChipSelectInternal[3],ChipSelectDef[2], ChipSelectDef[1], ChipSelectDef[0]}; endcase assign SPICS = ChipSelectMode[0] ? ChipSelectDef : ChipSelectAuto; endmodule module SynchFIFO #(parameter M =3 , N= 8)( input logic PCLK, wen, ren, PRESETn, input logic winc,rinc, input logic [N-1:0] wdata, input logic [M-1:0] wwatermarklevel, rwatermarklevel, output logic [N-1:0] rdata, output logic wfull, rempty, output logic wwatermark, rwatermark); logic [N-1:0] mem[2**M]; logic [M:0] rptr, wptr; logic [M:0] rptrnext, wptrnext; logic rempty_val; logic wfull_val; logic [M-1:0] raddr; logic [M-1:0] waddr; assign rdata = mem[raddr]; always_ff @(posedge PCLK) if (winc & ~wfull) mem[waddr] <= wdata; // write and read are enabled always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) begin rptr <= 0; wptr <= 0; wfull <= 1'b0; rempty <= 1'b1; end else begin if (wen) begin wfull <= wfull_val; wptr <= wptrnext; end if (ren) begin rptr <= rptrnext; rempty <= rempty_val; end end assign raddr = rptr[M-1:0]; assign rptrnext = rptr + {3'b0, (rinc & ~rempty)}; assign rempty_val = (wptr == rptrnext); assign rwatermark = ((waddr - raddr) < rwatermarklevel) & ~wfull; assign waddr = wptr[M-1:0]; assign wwatermark = ((waddr - raddr) > wwatermarklevel) | wfull; assign wptrnext = wptr + {3'b0, (winc & ~wfull)}; assign wfull_val = ({~wptrnext[M], wptrnext[M-1:0]} == rptr); endmodule module TransmitShiftFSM( input logic PCLK, PRESETn, input logic TransmitFIFOReadEmpty, ReceivePenultimateFrameBoolean, Active0, output logic TransmitShiftEmpty); typedef enum logic [1:0] {TransmitShiftEmptyState, TransmitShiftHoldState, TransmitShiftNotEmptyState} statetype; statetype TransmitState, TransmitNextState; always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) TransmitState <= TransmitShiftEmptyState; else TransmitState <= TransmitNextState; always_comb case(TransmitState) TransmitShiftEmptyState: begin if (TransmitFIFOReadEmpty | (~TransmitFIFOReadEmpty & (ReceivePenultimateFrameBoolean & Active0))) TransmitNextState = TransmitShiftEmptyState; else if (~TransmitFIFOReadEmpty) TransmitNextState = TransmitShiftNotEmptyState; end TransmitShiftNotEmptyState: begin if (ReceivePenultimateFrameBoolean & Active0) TransmitNextState = TransmitShiftEmptyState; else TransmitNextState = TransmitShiftNotEmptyState; end endcase assign TransmitShiftEmpty = (TransmitNextState == TransmitShiftEmptyState); endmodule module ReceiveShiftFSM( input logic PCLK, PRESETn, SCLKenable, input logic ReceivePenultimateFrameBoolean, SampleEdge, SckMode, output logic ReceiveShiftFull ); typedef enum logic [1:0] {ReceiveShiftFullState, ReceiveShiftNotFullState, ReceiveShiftDelayState} statetype; statetype ReceiveState, ReceiveNextState; always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) ReceiveState <= ReceiveShiftNotFullState; else if (SCLKenable) begin case (ReceiveState) ReceiveShiftFullState: ReceiveState <= ReceiveShiftNotFullState; ReceiveShiftNotFullState: if (ReceivePenultimateFrameBoolean & (SampleEdge)) ReceiveState <= ReceiveShiftDelayState; else ReceiveState <= ReceiveShiftNotFullState; ReceiveShiftDelayState: ReceiveState <= ReceiveShiftFullState; endcase end assign ReceiveShiftFull = SckMode ? (ReceiveState == ReceiveShiftFullState) : (ReceiveState == ReceiveShiftDelayState); endmodule