cvw/wally-pipelined/src/ifu/ifu.sv
Ross Thompson 6134c22aca Split the ReadDataW bus into two parts in preparation for the data cache. On the AHB side it is now HRDATAW and on the CPU to data cache side it is ReadDataW. lsu.sv now handles the connection between the two.
Also reorganized the inputs and outputs of lsu and pagetablewalker into connects between CPU, pagetablewalker, and AHB.
Finally add DisableTranslation to TLB as teh pagetablewalker will need to force no translation when active regardless of the state of SATP.
With Kip.
2021-06-23 16:43:22 -05:00

292 lines
12 KiB
Systemverilog

///////////////////////////////////////////
// ifu.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Instrunction Fetch Unit
// PC, branch prediction, instruction cache
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module ifu (
input logic clk, reset,
input logic StallF, StallD, StallE, StallM, StallW,
input logic FlushF, FlushD, FlushE, FlushM, FlushW,
// Fetch
input logic [`XLEN-1:0] InstrInF,
input logic InstrAckF,
output logic [`XLEN-1:0] PCF,
output logic [`PA_BITS-1:0] InstrPAdrF,
output logic InstrReadF,
output logic ICacheStallF,
// Decode
output logic [`XLEN-1:0] PCD,
// Execute
output logic [`XLEN-1:0] PCLinkE,
input logic PCSrcE,
input logic [`XLEN-1:0] PCTargetE,
output logic [`XLEN-1:0] PCE,
output logic BPPredWrongE,
// Mem
input logic RetM, TrapM,
input logic [`XLEN-1:0] PrivilegedNextPCM,
output logic [31:0] InstrD, InstrE, InstrM, InstrW,
output logic [`XLEN-1:0] PCM,
output logic [4:0] InstrClassM,
output logic BPPredDirWrongM,
output logic BTBPredPCWrongM,
output logic RASPredPCWrongM,
output logic BPPredClassNonCFIWrongM,
// Writeback
// output logic [`XLEN-1:0] PCLinkW,
// Faults
input logic IllegalBaseInstrFaultD,
output logic ITLBInstrPageFaultF,
output logic IllegalIEUInstrFaultD,
output logic InstrMisalignedFaultM,
output logic [`XLEN-1:0] InstrMisalignedAdrM,
// mmu management
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] PageTableEntryF,
input logic [1:0] PageTypeF,
input logic [`XLEN-1:0] SATP_REGW,
input logic STATUS_MXR, STATUS_SUM,
input logic ITLBWriteF, ITLBFlushF,
output logic ITLBMissF, ITLBHitF,
// pmp/pma (inside mmu) signals. *** temporarily from AHB bus but eventually replace with internal versions pre H
input logic [31:0] HADDR,
input logic [2:0] HSIZE, HBURST,
input logic HWRITE,
input logic ExecuteAccessF, //read, write, and atomic access are all set to zero because this mmu is onlt working with instructinos in the F stage.
input logic [63:0] PMPCFG01_REGW, PMPCFG23_REGW, // *** all of these come from the privileged unit, so they're gonna have to come over into ifu and dmem
input var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [`PMP_ENTRIES-1:0],
output logic PMPInstrAccessFaultF, PMAInstrAccessFaultF,
output logic ISquashBusAccessF,
output logic [5:0] IHSELRegionsF
);
logic [`XLEN-1:0] PCCorrectE, UnalignedPCNextF, PCNextF;
logic misaligned, BranchMisalignedFaultE, BranchMisalignedFaultM, TrapMisalignedFaultM;
logic PrivilegedChangePCM;
logic IllegalCompInstrD;
logic [`XLEN-1:0] PCPlus2or4F, PCW, PCLinkD, PCLinkM, PCPF;
logic [`XLEN-3:0] PCPlusUpperF;
logic CompressedF;
logic [31:0] InstrRawD, FinalInstrRawF;
localparam [31:0] nop = 32'h00000013; // instruction for NOP
logic reset_q; // *** look at this later.
logic BPPredDirWrongE, BTBPredPCWrongE, RASPredPCWrongE, BPPredClassNonCFIWrongE;
logic PMALoadAccessFaultM, PMAStoreAccessFaultM;
logic PMPLoadAccessFaultM, PMPStoreAccessFaultM; // *** these are just so that the mmu has somewhere to put these outputs, they're unused in this stage
// if you're allowed to parameterize outputs/ inputs existence, these are an easy delete.
logic [`PA_BITS-1:0] PCPFmmu;
generate
if (`XLEN==32)
assign PCPF = PCPFmmu[31:0];
else
assign PCPF = {8'b0, PCPFmmu};
endgenerate
mmu #(.ENTRY_BITS(`ITLB_ENTRY_BITS), .IMMU(1)) itlb(.TLBAccessType(2'b10), .VirtualAddress(PCF), .Size(2'b10),
.PTEWriteVal(PageTableEntryF), .PageTypeWriteVal(PageTypeF),
.TLBWrite(ITLBWriteF), .TLBFlush(ITLBFlushF),
.PhysicalAddress(PCPFmmu), .TLBMiss(ITLBMissF),
.TLBHit(ITLBHitF), .TLBPageFault(ITLBInstrPageFaultF),
.AtomicAccessM(1'b0), .WriteAccessM(1'b0), .ReadAccessM(1'b0), // *** is this the right way force these bits constant? should they be someething else?
.SquashBusAccess(ISquashBusAccessF), .HSELRegions(IHSELRegionsF),
.DisableTranslation(1'b0),
.*);
// branch predictor signals
logic SelBPPredF;
logic [`XLEN-1:0] BPPredPCF, PCNext0F, PCNext1F, PCNext2F, PCNext3F;
logic [4:0] InstrClassD, InstrClassE;
// *** put memory interface on here, InstrF becomes output
//assign InstrPAdrF = PCF; // *** no MMU
//assign InstrReadF = ~StallD; // *** & ICacheMissF; add later
// assign InstrReadF = 1; // *** & ICacheMissF; add later
icache icache(.*,
.PCNextF(PCNextF[`PA_BITS-1:0]),
.PCPF(PCPFmmu));
flopenl #(32) AlignedInstrRawDFlop(clk, reset | reset_q, ~StallD, FlushD ? nop : FinalInstrRawF, nop, InstrRawD);
assign PrivilegedChangePCM = RetM | TrapM;
mux2 #(`XLEN) pcmux0(.d0(PCPlus2or4F),
.d1(BPPredPCF),
.s(SelBPPredF),
.y(PCNext0F));
mux2 #(`XLEN) pcmux1(.d0(PCNext0F),
.d1(PCCorrectE),
.s(BPPredWrongE),
.y(PCNext1F));
mux2 #(`XLEN) pcmux2(.d0(PCNext1F),
.d1(PrivilegedNextPCM),
.s(PrivilegedChangePCM),
.y(PCNext2F));
mux2 #(`XLEN) pcmux4(.d0(PCNext2F),
.d1(`RESET_VECTOR),
.s(reset_q),
.y(UnalignedPCNextF));
flop #(1) resetReg (.clk(clk),
.d(reset),
.q(reset_q));
assign PCNextF = {UnalignedPCNextF[`XLEN-1:1], 1'b0}; // hart-SPEC p. 21 about 16-bit alignment
flopenl #(`XLEN) pcreg(clk, reset, ~StallF & ~ICacheStallF, PCNextF, `RESET_VECTOR, PCF);
// branch and jump predictor
generate
if (`BPRED_ENABLED == 1) begin : bpred
// I am making the port connection explicit for now as I want to see them and they will be changing.
bpred bpred(.*,
.PCNextF(PCNextF),
.BPPredPCF(BPPredPCF),
.SelBPPredF(SelBPPredF),
.PCE(PCE),
.PCSrcE(PCSrcE),
.PCTargetE(PCTargetE),
.PCD(PCD),
.PCLinkE(PCLinkE),
.InstrClassE(InstrClassE),
.BPPredWrongE(BPPredWrongE),
.BPPredDirWrongE(BPPredDirWrongE),
.BTBPredPCWrongE(BTBPredPCWrongE),
.RASPredPCWrongE(RASPredPCWrongE),
.BPPredClassNonCFIWrongE(BPPredClassNonCFIWrongE));
end else begin : bpred
assign BPPredPCF = {`XLEN{1'b0}};
assign SelBPPredF = 1'b0;
assign BPPredWrongE = PCSrcE;
assign BPPredDirWrongE = 1'b0;
assign BTBPredPCWrongE = 1'b0;
assign RASPredPCWrongE = 1'b0;
assign BPPredClassNonCFIWrongE = 1'b0;
end
endgenerate
// The true correct target is PCTargetE if PCSrcE is 1 else it is the fall through PCLinkE.
assign PCCorrectE = PCSrcE ? PCTargetE : PCLinkE;
// pcadder
// add 2 or 4 to the PC, based on whether the instruction is 16 bits or 32
assign PCPlusUpperF = PCF[`XLEN-1:2] + 1; // add 4 to PC
// choose PC+2 or PC+4
always_comb
if (CompressedF) // add 2
if (PCF[1]) PCPlus2or4F = {PCPlusUpperF, 2'b00};
else PCPlus2or4F = {PCF[`XLEN-1:2], 2'b10};
else PCPlus2or4F = {PCPlusUpperF, PCF[1:0]}; // add 4
// Decode stage pipeline register and logic
flopenrc #(`XLEN) PCDReg(clk, reset, FlushD, ~StallD, PCF, PCD);
// expand 16-bit compressed instructions to 32 bits
decompress decomp(.*);
assign IllegalIEUInstrFaultD = IllegalBaseInstrFaultD | IllegalCompInstrD; // illegal if bad 32 or 16-bit instr
// *** combine these with others in better way, including M, F
// the branch predictor needs a compact decoding of the instruction class.
// *** consider adding in the alternate return address x5 for returns.
assign InstrClassD[4] = (InstrD[6:0] & 7'h77) == 7'h67 && (InstrD[11:07] & 5'h1B) == 5'h01; // jal(r) must link to ra or r5
assign InstrClassD[3] = InstrD[6:0] == 7'h67 && (InstrD[19:15] & 5'h1B) == 5'h01; // return must return to ra or r5
assign InstrClassD[2] = InstrD[6:0] == 7'h67 && (InstrD[19:15] & 5'h1B) != 5'h01 && (InstrD[11:7] & 5'h1B) != 5'h01; // jump register, but not return
assign InstrClassD[1] = InstrD[6:0] == 7'h6F && (InstrD[11:7] & 5'h1B) != 5'h01; // jump, RD != x1 or x5
assign InstrClassD[0] = InstrD[6:0] == 7'h63; // branch
// Misaligned PC logic
generate
if (`C_SUPPORTED) // C supports compressed instructions on halfword boundaries
assign misaligned = PCNextF[0];
else // instructions must be on word boundaries
assign misaligned = |PCNextF[1:0];
endgenerate
// pipeline misaligned faults to M stage
assign BranchMisalignedFaultE = misaligned & PCSrcE; // E-stage (Branch/Jump) misaligned
flopenr #(1) InstrMisalginedReg(clk, reset, ~StallM, BranchMisalignedFaultE, BranchMisalignedFaultM);
// *** Ross Thompson. Check InstrMisalignedAdrM as I believe it is the same as PCF. Should be able to remove.
flopenr #(`XLEN) InstrMisalignedAdrReg(clk, reset, ~StallM, PCNextF, InstrMisalignedAdrM);
assign TrapMisalignedFaultM = misaligned & PrivilegedChangePCM;
assign InstrMisalignedFaultM = BranchMisalignedFaultM; // | TrapMisalignedFaultM; *** put this back in without causing a cyclic path
flopenr #(32) InstrEReg(clk, reset, ~StallE, FlushE ? nop : InstrD, InstrE);
flopenr #(32) InstrMReg(clk, reset, ~StallM, FlushM ? nop : InstrE, InstrM);
// flopenr #(32) InstrWReg(clk, reset, ~StallW, FlushW ? nop : InstrM, InstrW); // just for testbench, delete later
flopenr #(`XLEN) PCEReg(clk, reset, ~StallE, PCD, PCE);
flopenr #(`XLEN) PCMReg(clk, reset, ~StallM, PCE, PCM);
// flopenr #(`XLEN) PCWReg(clk, reset, ~StallW, PCM, PCW); // *** probably not needed; delete later
flopenrc #(5) InstrClassRegE(.clk(clk),
.reset(reset),
.en(~StallE),
.clear(FlushE),
.d(InstrClassD),
.q(InstrClassE));
flopenrc #(5) InstrClassRegM(.clk(clk),
.reset(reset),
.en(~StallM),
.clear(FlushM),
.d(InstrClassE),
.q(InstrClassM));
flopenrc #(4) BPPredWrongRegM(.clk(clk),
.reset(reset),
.en(~StallM),
.clear(FlushM),
.d({BPPredDirWrongE, BTBPredPCWrongE, RASPredPCWrongE, BPPredClassNonCFIWrongE}),
.q({BPPredDirWrongM, BTBPredPCWrongM, RASPredPCWrongM, BPPredClassNonCFIWrongM}));
// seems like there should be a lower-cost way of doing this PC+2 or PC+4 for JAL.
// either have ALU compute PC+2/4 and feed into ALUResult input of ResultMux or
// have dedicated adder in Mem stage based on PCM + 2 or 4
// *** redo this
flopenr #(`XLEN) PCPDReg(clk, reset, ~StallD, PCPlus2or4F, PCLinkD);
flopenr #(`XLEN) PCPEReg(clk, reset, ~StallE, PCLinkD, PCLinkE);
// flopenr #(`XLEN) PCPMReg(clk, reset, ~StallM, PCLinkE, PCLinkM);
// /flopenr #(`XLEN) PCPWReg(clk, reset, ~StallW, PCLinkM, PCLinkW);
endmodule