cvw/linux/buildroot-packages/package-source/fpga-axi-sdc.c

499 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/ktime.h>
/*
* AXI SD Card driver.
*
* AXI SD Card is open source Verilog implementation of high speed SD card controller.
* It is mainly used in FPGA designs.
*/
#ifdef CONFIG_DEBUG_INFO
#pragma GCC optimize("O0")
#endif
// Capability bits
#define SDC_CAPABILITY_SD_4BIT 0x0001
#define SDC_CAPABILITY_SD_RESET 0x0002
#define SDC_CAPABILITY_ADDR 0xff00
// Control bits
#define SDC_CONTROL_SD_4BIT 0x0001
#define SDC_CONTROL_SD_RESET 0x0002
// Card detect bits
#define SDC_CARD_INSERT_INT_EN 0x0001
#define SDC_CARD_INSERT_INT_REQ 0x0002
#define SDC_CARD_REMOVE_INT_EN 0x0004
#define SDC_CARD_REMOVE_INT_REQ 0x0008
// Command status bits
#define SDC_CMD_INT_STATUS_CC 0x0001 // Command complete
#define SDC_CMD_INT_STATUS_EI 0x0002 // Any error
#define SDC_CMD_INT_STATUS_CTE 0x0004 // Timeout
#define SDC_CMD_INT_STATUS_CCRC 0x0008 // CRC error
#define SDC_CMD_INT_STATUS_CIE 0x0010 // Command code check error
// Data status bits
#define SDC_DAT_INT_STATUS_TRS 0x0001 // Transfer complete
#define SDC_DAT_INT_STATUS_ERR 0x0002 // Any error
#define SDC_DAT_INT_STATUS_CTE 0x0004 // Timeout
#define SDC_DAT_INT_STATUS_CRC 0x0008 // CRC error
#define SDC_DAT_INT_STATUS_CFE 0x0010 // Data FIFO underrun or overrun
#define CMD_TIMEOUT_MS 1000
#define BUSY_TIMEOUT_MS 500
struct sdc_regs {
volatile uint32_t argument;
volatile uint32_t command;
volatile uint32_t response1;
volatile uint32_t response2;
volatile uint32_t response3;
volatile uint32_t response4;
volatile uint32_t data_timeout;
volatile uint32_t control;
volatile uint32_t cmd_timeout;
volatile uint32_t clock_divider;
volatile uint32_t software_reset;
volatile uint32_t power_control;
volatile uint32_t capability;
volatile uint32_t cmd_int_status;
volatile uint32_t cmd_int_enable;
volatile uint32_t dat_int_status;
volatile uint32_t dat_int_enable;
volatile uint32_t block_size;
volatile uint32_t block_count;
volatile uint32_t card_detect;
volatile uint32_t res_50;
volatile uint32_t res_54;
volatile uint32_t res_58;
volatile uint32_t res_5c;
volatile uint64_t dma_addres;
};
struct sdc_host {
struct platform_device * pdev;
struct sdc_regs __iomem * regs;
uint32_t clk_freq;
spinlock_t lock;
struct mmc_request * mrq;
struct mmc_data * data;
unsigned dma_addr_bits;
unsigned dma_count;
dma_addr_t dma_addr;
unsigned dma_size;
int irq;
};
static const struct of_device_id axi_sdc_of_match_table[] = {
{ .compatible = "riscv,axi-sd-card-1.0" },
{},
};
MODULE_DEVICE_TABLE(of, axi_sdc_of_match_table);
/* Set clock prescalar value based on the required clock in HZ */
static void sdc_set_clock(struct sdc_host * host, uint clock) {
unsigned clk_div;
/* Min clock frequency should be 400KHz */
if (clock < 400000) clock = 400000;
clk_div = host->clk_freq / (2 * clock);
if (clk_div > 0x100) clk_div = 0x100;
if (clk_div < 1) clk_div = 1;
if (host->regs->clock_divider != clk_div - 1) {
host->regs->clock_divider = clk_div - 1;
udelay(10000);
}
}
static void sdc_cmd_finish(struct sdc_host * host, struct mmc_command * cmd) {
while (1) {
unsigned status = host->regs->cmd_int_status;
if (status) {
// clear interrupts
host->regs->cmd_int_status = 0;
while (host->regs->software_reset != 0) {}
if (status == SDC_CMD_INT_STATUS_CC) {
// get response
cmd->resp[0] = host->regs->response1;
if (cmd->flags & MMC_RSP_136) {
cmd->resp[1] = host->regs->response2;
cmd->resp[2] = host->regs->response3;
cmd->resp[3] = host->regs->response4;
}
break;
}
cmd->error = (status & SDC_CMD_INT_STATUS_CTE) ? -ETIME : -EIO;
break;
}
}
}
static int sdc_setup_data_xfer(struct sdc_host * host, struct mmc_host * mmc, struct mmc_data * data) {
uint64_t timeout = 0;
data->bytes_xfered = 0;
if (host->dma_addr & 3) return -EINVAL;
if (data->blksz & 3) return -EINVAL;
if (data->blksz < 4) return -EINVAL;
if (data->blksz > 0x1000) return -EINVAL;
if (data->blocks > 0x10000) return -EINVAL;
if (host->dma_addr + data->blksz * data->blocks > ((uint64_t)1 << host->dma_addr_bits)) return -EINVAL;
if (data->sg->length < data->blksz * data->blocks) return -EINVAL;
// SD card data transfer time
timeout += data->blocks * data->blksz * 8 / (1 << mmc->ios.bus_width);
// SD card "busy" time
timeout += (uint64_t)mmc->ios.clock * BUSY_TIMEOUT_MS / 1000 * data->blocks;
host->regs->dma_addres = (uint64_t)host->dma_addr;
host->regs->block_size = data->blksz - 1;
host->regs->block_count = data->blocks - 1;
host->regs->data_timeout = (uint32_t)timeout;
if (host->regs->data_timeout != timeout) host->regs->data_timeout = 0;
return 0;
}
static int sdc_send_cmd(struct sdc_host * host, struct mmc_host * mmc, struct mmc_command * cmd, struct mmc_data * data) {
int command = cmd->opcode << 8;
uint64_t timeout = 0;
int xfer = 0;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
command |= 2;
else {
command |= 1;
}
}
if (cmd->flags & MMC_RSP_BUSY) command |= 1 << 2;
if (cmd->flags & MMC_RSP_CRC) command |= 1 << 3;
if (cmd->flags & MMC_RSP_OPCODE) command |= 1 << 4;
if (data && (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE)) && data->blocks) {
host->dma_count = dma_map_sg(&host->pdev->dev, data->sg, data->sg_len, mmc_get_dma_dir(data));
if (host->dma_count != 1) {
dma_unmap_sg(&host->pdev->dev, data->sg, data->sg_len, mmc_get_dma_dir(data));
return data->error = -EIO;
}
host->dma_addr = sg_dma_address(data->sg);
host->dma_size = sg_dma_len(data->sg);
if (data->flags & MMC_DATA_READ) command |= 1 << 5;
if (data->flags & MMC_DATA_WRITE) command |= 1 << 6;
data->error = sdc_setup_data_xfer(host, mmc, data);
if (data->error < 0) {
dma_unmap_sg(&host->pdev->dev, data->sg, data->sg_len, mmc_get_dma_dir(data));
return data->error;
}
xfer = 1;
}
timeout = (uint64_t)mmc->ios.clock * CMD_TIMEOUT_MS / 1000;
host->regs->command = command;
host->regs->cmd_timeout = (uint32_t)timeout;
if (host->regs->cmd_timeout != timeout) host->regs->cmd_timeout = 0;
host->regs->argument = cmd->arg;
sdc_cmd_finish(host, cmd);
if (cmd->error < 0) {
if (xfer) dma_unmap_sg(&host->pdev->dev, data->sg, data->sg_len, mmc_get_dma_dir(data));
return cmd->error;
}
if (xfer) host->data = data;
return 0;
}
static void sdc_request(struct mmc_host * mmc, struct mmc_request * mrq) {
struct sdc_host * host = mmc_priv(mmc);
/* Clear the error statuses in case this is a retry */
if (mrq->sbc) mrq->sbc->error = 0;
if (mrq->cmd) mrq->cmd->error = 0;
if (mrq->data) mrq->data->error = 0;
if (mrq->stop) mrq->stop->error = 0;
spin_lock_irq(&host->lock);
host->data = NULL;
host->mrq = mrq;
if (!mrq->sbc || sdc_send_cmd(host, mmc, mrq->sbc, NULL) == 0) {
sdc_send_cmd(host, mmc, mrq->cmd, mrq->data);
}
if (host->data == NULL) {
mmc_request_done(mmc, mrq);
host->mrq = NULL;
}
else {
host->regs->dat_int_enable = SDC_DAT_INT_STATUS_TRS | SDC_DAT_INT_STATUS_ERR;
}
spin_unlock_irq(&host->lock);
}
static void sdc_set_ios(struct mmc_host * mmc, struct mmc_ios * ios) {
struct sdc_host * host = mmc_priv(mmc);
spin_lock_irq(&host->lock);
sdc_set_clock(host, ios->clock);
host->regs->control = ios->bus_width == MMC_BUS_WIDTH_4 ? SDC_CONTROL_SD_4BIT : 0;
spin_unlock_irq(&host->lock);
}
static void sdc_reset(struct mmc_host * mmc) {
struct sdc_host * host = mmc_priv(mmc);
uint32_t card_detect = 0;
spin_lock_irq(&host->lock);
sdc_set_clock(host, 400000);
// software reset
host->regs->software_reset = 1;
while ((host->regs->software_reset & 1) == 0) {}
// clear software reset
host->regs->software_reset = 0;
while (host->regs->software_reset != 0) {}
udelay(10000);
// set bus width 1 bit
host->regs->control = 0;
// disable cmd/data interrupts
host->regs->cmd_int_enable = 0;
host->regs->dat_int_enable = 0;
// clear cmd/data interrupts
host->regs->cmd_int_status = 0;
host->regs->dat_int_status = 0;
// enable card detect interrupt
card_detect = host->regs->card_detect;
if (card_detect & SDC_CARD_INSERT_INT_REQ) {
host->regs->card_detect = SDC_CARD_REMOVE_INT_EN;
}
else if (card_detect & SDC_CARD_REMOVE_INT_REQ) {
host->regs->card_detect = SDC_CARD_INSERT_INT_EN;
}
while (host->regs->software_reset != 0) {}
spin_unlock_irq(&host->lock);
}
static void sdc_card_reset(struct mmc_host * mmc) {
struct sdc_host * host = mmc_priv(mmc);
uint32_t control = 0;
spin_lock_irq(&host->lock);
control = host->regs->control;
host->regs->control = control | SDC_CONTROL_SD_RESET;
udelay(10);
host->regs->control = control & ~(uint32_t)SDC_CONTROL_SD_RESET;
udelay(10);
spin_unlock_irq(&host->lock);
}
static int sdc_get_cd(struct mmc_host * mmc) {
struct sdc_host * host = mmc_priv(mmc);
uint32_t card_detect = host->regs->card_detect;
if (card_detect == 0) return 1; /* Card detect not supported */
return (card_detect & SDC_CARD_INSERT_INT_REQ) != 0;
}
static irqreturn_t sdc_isr(int irq, void * dev_id) {
struct mmc_host * mmc = (struct mmc_host *)dev_id;
struct sdc_host * host = mmc_priv(mmc);
uint32_t card_detect = 0;
uint32_t data_status = 0;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
card_detect = host->regs->card_detect;
if (card_detect & SDC_CARD_INSERT_INT_REQ) {
if (card_detect & SDC_CARD_INSERT_INT_EN) {
host->regs->card_detect = SDC_CARD_REMOVE_INT_EN;
mmc_detect_change(mmc, 0);
}
}
else if (card_detect & SDC_CARD_REMOVE_INT_REQ) {
if (card_detect & SDC_CARD_REMOVE_INT_EN) {
host->regs->card_detect = SDC_CARD_INSERT_INT_EN;
mmc_detect_change(mmc, 0);
}
}
if ((data_status = host->regs->dat_int_status) != 0) {
host->regs->dat_int_enable = 0;
host->regs->dat_int_status = 0;
while (host->regs->software_reset != 0) {}
if (host->data) {
struct mmc_request * mrq = host->mrq;
struct mmc_data * data = host->data;
if (data_status == SDC_DAT_INT_STATUS_TRS) {
data->bytes_xfered = data->blksz * data->blocks;
}
else {
data->error = -EIO;
if (data_status & SDC_DAT_INT_STATUS_CTE) data->error = -ETIME;
}
if (mrq->stop) sdc_send_cmd(host, mmc, mrq->stop, NULL);
mmc_request_done(mmc, mrq);
dma_unmap_sg(&host->pdev->dev, data->sg, data->sg_len, mmc_get_dma_dir(data));
host->data = NULL;
host->mrq = NULL;
}
}
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_HANDLED;
}
/*---------------------------------------------------------------------*/
// JACOB: Had to modify this to resemble the older version of Linux
// Used to be called hw_reset in older versions. Now it's
// called .card_hw_reset to make it unambiguous what it's
// resetting. When I update Linux, this will be changed back.
static const struct mmc_host_ops axi_sdc_ops = {
.request = sdc_request,
.set_ios = sdc_set_ios,
.get_cd = sdc_get_cd,
.hw_reset = sdc_card_reset,
};
static int axi_sdc_probe(struct platform_device * pdev) {
struct device * dev = &pdev->dev;
struct resource * iomem;
struct sdc_host * host;
struct mmc_host * mmc;
void __iomem * ioaddr;
uint32_t capability;
int irq;
int ret;
iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ioaddr = devm_ioremap_resource(dev, iomem);
if (IS_ERR(ioaddr)) return PTR_ERR(ioaddr);
irq = platform_get_irq(pdev, 0);
if (irq <= 0) return -ENXIO;
mmc = mmc_alloc_host(sizeof(*host), dev);
if (!mmc) return -ENOMEM;
mmc->ops = &axi_sdc_ops;
host = mmc_priv(mmc);
host->pdev = pdev;
host->regs = (struct sdc_regs __iomem *)ioaddr;
host->irq = irq;
ret = of_property_read_u32(dev->of_node, "clock", &host->clk_freq);
if (ret) host->clk_freq = 100000000;
ret = mmc_of_parse(mmc);
if (ret) {
mmc_free_host(mmc);
return ret;
}
if (mmc->f_min == 0) mmc->f_min = host->clk_freq / 0x200; /* maximum clock division 256 * 2 */
if (mmc->f_max == 0) mmc->f_max = host->clk_freq / 2; /* minimum clock division 2 */
if ((mmc->caps2 & MMC_CAP2_NO_SDIO) == 0) {
/* TODO: deprecated 10/19/2022, set in DTS */
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
mmc->caps2 |= MMC_CAP2_NO_SDIO;
}
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->max_segs = 1;
mmc->max_req_size = 0x2000000;
mmc->max_seg_size = 0x2000000;
mmc->max_blk_size = 0x1000;
mmc->max_blk_count = 0x10000;
ret = request_irq(host->irq, sdc_isr, IRQF_TRIGGER_HIGH, "fpga-axi-sdc", mmc);
if (ret) {
mmc_free_host(mmc);
return ret;
}
host->dma_addr_bits = 32;
capability = host->regs->capability;
if (capability & SDC_CAPABILITY_ADDR) {
host->dma_addr_bits = (capability & SDC_CAPABILITY_ADDR) >> __builtin_ctz(SDC_CAPABILITY_ADDR);
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(host->dma_addr_bits));
if (ret) {
printk(KERN_ERR "AXI-SDC: Can't set DMA mask\n");
mmc_free_host(mmc);
return ret;
}
}
sdc_reset(mmc);
ret = mmc_add_host(mmc);
if (ret) {
printk(KERN_ERR "AXI-SDC: Can't register device\n");
mmc_free_host(mmc);
return ret;
}
spin_lock_init(&host->lock);
platform_set_drvdata(pdev, host);
return 0;
}
static int axi_sdc_remove(struct platform_device * pdev) {
struct sdc_host * host = platform_get_drvdata(pdev);
struct mmc_host * mmc = mmc_from_priv(host);
free_irq(host->irq, mmc);
mmc_remove_host(mmc);
mmc_free_host(mmc);
return 0;
}
static struct platform_driver axi_sdc_driver = {
.driver = {
.name = "riscv-axi-sdc",
.of_match_table = axi_sdc_of_match_table,
},
.probe = axi_sdc_probe,
.remove = axi_sdc_remove,
};
module_platform_driver(axi_sdc_driver);
MODULE_DESCRIPTION("AXI SD Card driver");
MODULE_AUTHOR("Eugene Tarassov");
MODULE_LICENSE("GPL v2");