cvw/src/mmu/hptw.sv

326 lines
19 KiB
Systemverilog

///////////////////////////////////////////
// hptw.sv
//
// Written: tfleming@hmc.edu 2 March 2021
// Modified: david_harris@hmc.edu 18 July 2021 cleanup and simplification
// kmacsaigoren@hmc.edu 1 June 2021
// implemented SV48 on top of SV39. This included, adding a level of the FSM for the extra page number segment
// adding support for terapage encoding, and for setting the HPTWAdr using the new level,
// adding the internal SvMode signal
//
// Purpose: Hardware Page Table Walker
//
// Documentation: RISC-V System on Chip Design
//
// A component of the CORE-V-WALLY configurable RISC-V project.
// https://github.com/openhwgroup/cvw
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
module hptw import cvw::*; #(parameter cvw_t P) (
input logic clk, reset,
input logic [P.XLEN-1:0] SATP_REGW, // includes SATP.MODE to determine number of levels in page table
input logic [P.XLEN-1:0] PCSpillF, // addresses to translate
input logic [P.XLEN+1:0] IEUAdrExtM, // addresses to translate
input logic [1:0] MemRWM, AtomicM,
// system status
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
input logic ENVCFG_ADUE, // HPTW A/D Update enable
input logic [1:0] PrivilegeModeW,
input logic [P.XLEN-1:0] ReadDataM, // page table entry from LSU
input logic [P.XLEN-1:0] WriteDataM,
input logic DCacheBusStallM, // stall from LSU
input logic [2:0] Funct3M,
input logic [6:0] Funct7M,
input logic ITLBMissOrUpdateAF,
input logic DTLBMissOrUpdateDAM,
input logic FlushW,
output logic [P.XLEN-1:0] PTE, // page table entry to TLBs
output logic [1:0] PageType, // page type to TLBs
output logic ITLBWriteF, DTLBWriteM, // write TLB with new entry
output logic [1:0] PreLSURWM,
output logic [P.XLEN+1:0] IHAdrM,
output logic [P.XLEN-1:0] IHWriteDataM,
output logic [1:0] LSUAtomicM,
output logic [2:0] LSUFunct3M,
output logic [6:0] LSUFunct7M,
output logic IgnoreRequestTLB,
output logic SelHPTW,
output logic HPTWStall,
input logic LSULoadAccessFaultM, LSUStoreAmoAccessFaultM,
input logic LSULoadPageFaultM, LSUStoreAmoPageFaultM,
output logic LoadAccessFaultM, StoreAmoAccessFaultM, HPTWInstrAccessFaultF,
output logic LoadPageFaultM, StoreAmoPageFaultM, HPTWInstrPageFaultF
);
typedef enum logic [3:0] {L0_ADR, L0_RD,
L1_ADR, L1_RD,
L2_ADR, L2_RD,
L3_ADR, L3_RD,
LEAF, IDLE, UPDATE_PTE,
FAULT} statetype;
logic DTLBWalk; // register TLBs translation miss requests
logic [P.PPN_BITS-1:0] BasePageTablePPN;
logic [P.PPN_BITS-1:0] CurrentPPN;
logic Executable, Writable, Readable, Valid, PTE_U;
logic Misaligned, MegapageMisaligned;
logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE;
logic StartWalk;
logic TLBMissOrUpdateDA;
logic PRegEn;
logic [1:0] NextPageType;
logic [P.SVMODE_BITS-1:0] SvMode;
logic [P.XLEN-1:0] TranslationVAdr;
logic [P.XLEN-1:0] NextPTE;
logic UpdatePTE;
logic HPTWUpdateDA;
logic [P.PA_BITS-1:0] HPTWReadAdr;
logic SelHPTWAdr;
logic [P.XLEN+1:0] HPTWAdrExt;
logic LSUAccessFaultM;
logic [P.PA_BITS-1:0] HPTWAdr;
logic [1:0] HPTWRW;
logic [2:0] HPTWSize; // 32 or 64 bit access
statetype WalkerState, NextWalkerState, InitialWalkerState;
logic HPTWLoadAccessFault, HPTWStoreAmoAccessFault, HPTWInstrAccessFault;
logic HPTWLoadAccessFaultDelay, HPTWStoreAmoAccessFaultDelay, HPTWInstrAccessFaultDelay;
logic HPTWLoadPageFault, HPTWStoreAmoPageFault, HPTWInstrPageFault;
logic HPTWLoadPageFaultDelay, HPTWStoreAmoPageFaultDelay, HPTWInstrPageFaultDelay;
logic HPTWAccessFaultDelay;
logic TakeHPTWFault;
logic PBMTFaultM;
logic HPTWFaultM;
// map hptw access faults onto either the original LSU load/store fault or instruction access fault
assign LSUAccessFaultM = LSULoadAccessFaultM | LSUStoreAmoAccessFaultM;
assign HPTWFaultM = LSUAccessFaultM | PBMTFaultM;
assign HPTWLoadAccessFault = LSUAccessFaultM & DTLBWalk & MemRWM[1] & ~MemRWM[0];
assign HPTWStoreAmoAccessFault = LSUAccessFaultM & DTLBWalk & MemRWM[0];
assign HPTWInstrAccessFault = LSUAccessFaultM & ~DTLBWalk;
assign HPTWLoadPageFault = PBMTFaultM & DTLBWalk & MemRWM[1] & ~MemRWM[0];
assign HPTWStoreAmoPageFault = PBMTFaultM & DTLBWalk & MemRWM[0];
assign HPTWInstrPageFault = PBMTFaultM & ~DTLBWalk;
flopr #(6) HPTWAccesFaultReg(clk, reset, {HPTWLoadAccessFault, HPTWStoreAmoAccessFault, HPTWInstrAccessFault,
HPTWLoadPageFault, HPTWStoreAmoPageFault, HPTWInstrPageFault},
{HPTWLoadAccessFaultDelay, HPTWStoreAmoAccessFaultDelay, HPTWInstrAccessFaultDelay,
HPTWLoadPageFaultDelay, HPTWStoreAmoPageFaultDelay, HPTWInstrPageFaultDelay});
assign TakeHPTWFault = WalkerState != IDLE;
// Improve timing by taking HPTW faults off critical path because these are multicycle operations anyway
assign LoadAccessFaultM = TakeHPTWFault ? HPTWLoadAccessFaultDelay : LSULoadAccessFaultM;
assign StoreAmoAccessFaultM = TakeHPTWFault ? HPTWStoreAmoAccessFaultDelay : LSUStoreAmoAccessFaultM;
assign HPTWInstrAccessFaultF = TakeHPTWFault ? HPTWInstrAccessFaultDelay : 1'b0;
assign LoadPageFaultM = TakeHPTWFault ? HPTWLoadPageFaultDelay : LSULoadPageFaultM;
assign StoreAmoPageFaultM = TakeHPTWFault ? HPTWStoreAmoPageFaultDelay : LSUStoreAmoPageFaultM;
assign HPTWInstrPageFaultF = TakeHPTWFault ? HPTWInstrPageFaultDelay : 1'b0;
// Extract bits from CSRs and inputs
assign SvMode = SATP_REGW[P.XLEN-1:P.XLEN-P.SVMODE_BITS];
assign BasePageTablePPN = SATP_REGW[P.PPN_BITS-1:0];
assign TLBMissOrUpdateDA = DTLBMissOrUpdateDAM | ITLBMissOrUpdateAF;
// Determine which address to translate
mux2 #(P.XLEN) vadrmux(PCSpillF, IEUAdrExtM[P.XLEN-1:0], DTLBWalk, TranslationVAdr);
assign CurrentPPN = PTE[P.PPN_BITS+9:10];
// State flops
flopenr #(1) TLBMissMReg(clk, reset, StartWalk, DTLBMissOrUpdateDAM, DTLBWalk); // when walk begins, record whether it was for DTLB (or record 0 for ITLB)
assign PRegEn = HPTWRW[1] & ~DCacheBusStallM | UpdatePTE;
flopenr #(P.XLEN) PTEReg(clk, reset, PRegEn, NextPTE, PTE); // Capture page table entry from data cache
// Assign PTE descriptors common across all XLEN values
// For non-leaf PTEs, D, A, U bits are reserved and ignored. They do not cause faults while walking the page table
assign {PTE_U, Executable, Writable, Readable, Valid} = PTE[4:0];
assign LeafPTE = Executable | Writable | Readable;
assign ValidPTE = Valid & ~(Writable & ~Readable);
assign ValidLeafPTE = ValidPTE & LeafPTE;
assign ValidNonLeafPTE = Valid & ~LeafPTE;
if(P.XLEN == 64) assign PBMTFaultM = ValidNonLeafPTE & (|PTE[62:61]);
else assign PBMTFaultM = 1'b0;
if(P.SVADU_SUPPORTED) begin : hptwwrites
logic ReadAccess, WriteAccess;
logic InvalidRead, InvalidWrite, InvalidOp;
logic UpperBitsUnequal, UpperBitsUnequalD;
logic OtherPageFault;
logic [1:0] EffectivePrivilegeMode;
logic ImproperPrivilege;
logic SaveHPTWAdr, SelHPTWWriteAdr;
logic [P.PA_BITS-1:0] HPTWWriteAdr;
logic SetDirty;
logic Dirty, Accessed;
logic [P.XLEN-1:0] AccessedPTE;
assign AccessedPTE = {PTE[P.XLEN-1:8], (SetDirty | PTE[7]), 1'b1, PTE[5:0]}; // set accessed bit, conditionally set dirty bit
mux2 #(P.XLEN) NextPTEMux(ReadDataM, AccessedPTE, UpdatePTE, NextPTE); // NextPTE = ReadDataM when ADUE = 0 because UpdatePTE = 0
flopenr #(P.PA_BITS) HPTWAdrWriteReg(clk, reset, SaveHPTWAdr, HPTWReadAdr, HPTWWriteAdr);
assign SaveHPTWAdr = (NextWalkerState == L0_RD | NextWalkerState == L1_RD | NextWalkerState == L2_RD | NextWalkerState == L3_RD); // save the HPTWAdr when the walker is about to read the PTE at any level; the last level read is the one to write during UpdatePTE
assign SelHPTWWriteAdr = UpdatePTE | HPTWRW[0];
mux2 #(P.PA_BITS) HPTWWriteAdrMux(HPTWReadAdr, HPTWWriteAdr, SelHPTWWriteAdr, HPTWAdr);
assign {Dirty, Accessed} = PTE[7:6];
assign WriteAccess = MemRWM[0]; // implies | (|AtomicM);
assign SetDirty = ~Dirty & DTLBWalk & WriteAccess;
assign ReadAccess = MemRWM[1];
assign EffectivePrivilegeMode = DTLBWalk ? (STATUS_MPRV ? STATUS_MPP : PrivilegeModeW) : PrivilegeModeW; // DTLB uses MPP mode when MPRV is 1
assign ImproperPrivilege = ((EffectivePrivilegeMode == P.U_MODE) & ~PTE_U) |
((EffectivePrivilegeMode == P.S_MODE) & PTE_U & (~STATUS_SUM & DTLBWalk));
// Check for page faults
vm64check #(P) vm64check(.SATP_MODE(SATP_REGW[P.XLEN-1:P.XLEN-P.SVMODE_BITS]), .VAdr(TranslationVAdr),
.SV39Mode(), .UpperBitsUnequal);
// This register is not functionally necessary, but improves the critical path.
flopr #(1) upperbitsunequalreg(clk, reset, UpperBitsUnequal, UpperBitsUnequalD);
assign InvalidRead = ReadAccess & ~Readable & (~STATUS_MXR | ~Executable);
assign InvalidWrite = WriteAccess & ~Writable;
assign InvalidOp = DTLBWalk ? (InvalidRead | InvalidWrite) : ~Executable;
assign OtherPageFault = ImproperPrivilege | InvalidOp | UpperBitsUnequalD | Misaligned | ~Valid;
// hptw needs to know if there is a Dirty or Access fault occuring on this
// memory access. If there is the PTE needs to be updated seting Access
// and possibly also Dirty. Dirty is set if the operation is a store/amo.
// However any other fault should not cause the update, and updates are in software when ENVCFG_ADUE = 0
assign HPTWUpdateDA = ValidLeafPTE & (~Accessed | SetDirty) & ENVCFG_ADUE & ~OtherPageFault;
assign HPTWRW[0] = (WalkerState == UPDATE_PTE); // HPTWRW[0] will always be 0 if ADUE = 0 because HPTWUpdateDA will be 0 so WalkerState never is UPDATE_PTE
assign UpdatePTE = (WalkerState == LEAF) & HPTWUpdateDA; // UpdatePTE will always be 0 if ADUE = 0 because HPTWUpdateDA will be 0
end else begin // block: hptwwrites
assign NextPTE = ReadDataM;
assign HPTWAdr = HPTWReadAdr;
assign HPTWUpdateDA = 1'b0;
assign UpdatePTE = 1'b0;
assign HPTWRW[0] = 1'b0;
end
// Enable and select signals based on states
assign StartWalk = (WalkerState == IDLE) & TLBMissOrUpdateDA;
assign HPTWRW[1] = (WalkerState == L3_RD) | (WalkerState == L2_RD) | (WalkerState == L1_RD) | (WalkerState == L0_RD);
assign DTLBWriteM = (WalkerState == LEAF & ~HPTWUpdateDA) & DTLBWalk;
assign ITLBWriteF = (WalkerState == LEAF & ~HPTWUpdateDA) & ~DTLBWalk;
// FSM to track PageType based on the levels of the page table traversed
flopr #(2) PageTypeReg(clk, reset, NextPageType, PageType);
always_comb
case (WalkerState)
L3_RD: NextPageType = 2'b11; // terapage
L2_RD: NextPageType = 2'b10; // gigapage
L1_RD: NextPageType = 2'b01; // megapage
L0_RD: NextPageType = 2'b00; // kilopage
default: NextPageType = PageType;
endcase
// HPTWAdr muxing
if (P.XLEN==32) begin // RV32
logic [9:0] VPN;
logic [P.PPN_BITS-1:0] PPN;
assign VPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? TranslationVAdr[31:22] : TranslationVAdr[21:12]; // select VPN field based on HPTW state
assign PPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? BasePageTablePPN : CurrentPPN;
assign HPTWReadAdr = {PPN, VPN, 2'b00};
assign HPTWSize = 3'b010;
end else begin // RV64
logic [8:0] VPN;
logic [P.PPN_BITS-1:0] PPN;
always_comb
case (WalkerState) // select VPN field based on HPTW state
L3_ADR, L3_RD: VPN = TranslationVAdr[47:39];
L2_ADR, L2_RD: VPN = TranslationVAdr[38:30];
L1_ADR, L1_RD: VPN = TranslationVAdr[29:21];
default: VPN = TranslationVAdr[20:12];
endcase
assign PPN = ((WalkerState == L3_ADR) | (WalkerState == L3_RD) |
(SvMode != P.SV48 & ((WalkerState == L2_ADR) | (WalkerState == L2_RD)))) ? BasePageTablePPN : CurrentPPN;
assign HPTWReadAdr = {PPN, VPN, 3'b000};
assign HPTWSize = 3'b011;
end
// Initial state and misalignment for RV32/64
if (P.XLEN == 32) begin
assign InitialWalkerState = L1_ADR;
assign MegapageMisaligned = |(CurrentPPN[9:0]); // must have zero PPN0
assign Misaligned = ((WalkerState == L0_ADR) & MegapageMisaligned);
end else begin
logic GigapageMisaligned, TerapageMisaligned;
assign InitialWalkerState = (SvMode == P.SV48) ? L3_ADR : L2_ADR;
assign TerapageMisaligned = |(CurrentPPN[26:0]); // Must have zero PPN2, PPN1, PPN0
assign GigapageMisaligned = |(CurrentPPN[17:0]); // Must have zero PPN1 and PPN0
assign MegapageMisaligned = |(CurrentPPN[8:0]); // Must have zero PPN0
assign Misaligned = ((WalkerState == L2_ADR) & TerapageMisaligned) | ((WalkerState == L1_ADR) & GigapageMisaligned) | ((WalkerState == L0_ADR) & MegapageMisaligned);
end
// Page Table Walker FSM
flopenl #(.TYPE(statetype)) WalkerStateReg(clk, reset | FlushW, 1'b1, NextWalkerState, IDLE, WalkerState);
always_comb
case (WalkerState)
IDLE: if (TLBMissOrUpdateDA) NextWalkerState = InitialWalkerState;
else NextWalkerState = IDLE;
L3_ADR: NextWalkerState = L3_RD; // First access in SV48
L3_RD: if (DCacheBusStallM) NextWalkerState = L3_RD;
else if (HPTWFaultM) NextWalkerState = FAULT;
else NextWalkerState = L2_ADR;
L2_ADR: if (InitialWalkerState == L2_ADR | ValidNonLeafPTE) NextWalkerState = L2_RD; // First access in SV39
else NextWalkerState = LEAF;
L2_RD: if (DCacheBusStallM) NextWalkerState = L2_RD;
else if (HPTWFaultM) NextWalkerState = FAULT;
else NextWalkerState = L1_ADR;
L1_ADR: if (InitialWalkerState == L1_ADR | ValidNonLeafPTE) NextWalkerState = L1_RD; // First access in SV32
else NextWalkerState = LEAF;
L1_RD: if (DCacheBusStallM) NextWalkerState = L1_RD;
else if (HPTWFaultM) NextWalkerState = FAULT;
else NextWalkerState = L0_ADR;
L0_ADR: if (ValidNonLeafPTE) NextWalkerState = L0_RD;
else NextWalkerState = LEAF;
L0_RD: if (DCacheBusStallM) NextWalkerState = L0_RD;
else if (HPTWFaultM) NextWalkerState = FAULT;
else NextWalkerState = LEAF;
LEAF: if (P.SVADU_SUPPORTED & HPTWUpdateDA) NextWalkerState = UPDATE_PTE;
else NextWalkerState = IDLE;
UPDATE_PTE: if (DCacheBusStallM) NextWalkerState = UPDATE_PTE;
else NextWalkerState = LEAF;
FAULT: NextWalkerState = IDLE;
default: NextWalkerState = IDLE; // Should never be reached
endcase // case (WalkerState)
assign IgnoreRequestTLB = (WalkerState == IDLE & TLBMissOrUpdateDA) | (HPTWFaultM); // If hptw request has pmp/a fault suppress bus access.
assign SelHPTW = WalkerState != IDLE;
assign HPTWStall = (WalkerState != IDLE & WalkerState != FAULT) | (WalkerState == IDLE & TLBMissOrUpdateDA);
// HTPW address/data/control muxing
// Once the walk is done and it is time to update the TLB we need to switch back
// to the orignal data virtual address.
assign SelHPTWAdr = SelHPTW & ~(DTLBWriteM | ITLBWriteF);
// multiplex the outputs to LSU
if (P.XLEN == 64) assign HPTWAdrExt = {{(P.XLEN+2-P.PA_BITS){1'b0}}, HPTWAdr}; // Extend to 66 bits
else assign HPTWAdrExt = HPTWAdr;
mux2 #(2) rwmux(MemRWM, HPTWRW, SelHPTW, PreLSURWM);
mux2 #(3) sizemux(Funct3M, HPTWSize, SelHPTW, LSUFunct3M);
mux2 #(7) funct7mux(Funct7M, 7'b0, SelHPTW, LSUFunct7M);
mux2 #(2) atomicmux(AtomicM, 2'b00, SelHPTW, LSUAtomicM);
mux2 #(P.XLEN+2) lsupadrmux(IEUAdrExtM, HPTWAdrExt, SelHPTWAdr, IHAdrM);
if (P.SVADU_SUPPORTED)
mux2 #(P.XLEN) lsuwritedatamux(WriteDataM, PTE, SelHPTW, IHWriteDataM);
else assign IHWriteDataM = WriteDataM;
endmodule