FPU control signals changed and FMA works

This commit is contained in:
Katherine Parry 2021-06-28 18:53:58 -04:00
parent a7f810e2c4
commit 6216bd7172
10 changed files with 571 additions and 689 deletions

View File

@ -45,8 +45,8 @@ assign FOpCtrlE = 3'b0;
// down - 010
// up - 011
// nearest max mag - 100
assign FrmE = 3'b010;
assign FmtE = 1'b1;
assign FrmE = 3'b011;
assign FmtE = 1'b0;
assign wnan = FmtE ? &FmaResultM[62:52] && |FmaResultM[51:0] : &FmaResultM[62:55] && |FmaResultM[54:32];
@ -110,7 +110,6 @@ always @(posedge clk)
if(ans >= 64'h7FF8000000000000 && ans <= 64'h7FFfffffffffffff ) $display( "ans=qutNaN ");
if(ans >= 64'hFFF8000000000000 && ans <= 64'hFFFfffffffffffff ) $display( "ans=qutNaN ");
errors = errors + 1;
if (errors == 20)
$stop;
end
if((FmtE==1'b0)&(FmaFlagsM != flags[4:0] || (!wnan && (FmaResultM != ans)) || (wnan && ansnan && ~(((xnan && (FmaResultM[62:0] == {FInput1E[62:55],1'b1,FInput1E[53:0]})) || (ynan && (FmaResultM[62:0] == {FInput2E[62:55],1'b1,FInput2E[53:0]})) || (znan && (FmaResultM[62:0] == {FInput3E[62:55],1'b1,FInput3E[53:0]})) || (FmaResultM[62:0] == ans[62:0]))) ))) begin

View File

@ -1,3 +1,3 @@
testfloat_gen f64_mulAdd -tininessafter -n 6133248 -rmin -seed 113355 -level 1 > testFloat
testfloat_gen f32_mulAdd -tininessafter -n 6133248 -rmax -seed 113355 -level 1 > testFloat
tr -d ' ' < testFloat > testFloatNoSpace

View File

@ -6,176 +6,128 @@ module fctrl (
input logic [2:0] Funct3D,
input logic [2:0] FRM_REGW,
output logic IllegalFPUInstrD,
output logic IsFPD,
output logic FWriteEnD,
output logic FDivStartD,
output logic [2:0] FResultSelD,
output logic [3:0] FOpCtrlD,
output logic [1:0] FResSelD,
output logic [1:0] FIntResSelD,
output logic FmtD,
output logic [2:0] FrmD,
output logic [1:0] FMemRWD,
output logic FOutputInput2D,
output logic FInput2UsedD, FInput3UsedD,
output logic FWriteIntD);
logic IllegalFPUInstr1D, IllegalFPUInstr2D;
// *** fix rounding for dynamic rounding
`define FCTRLW 15
logic [`FCTRLW-1:0] ControlsD;
// FPU Instruction Decoder
always_comb
case(OpD)
// FWriteEn_FWriteInt_FResultSel_FOpCtrl_FResSel_FIntResSel_FDivStart_IllegalFPUInstr
7'b0000111: case(Funct3D)
3'b010: ControlsD = `FCTRLW'b1_0_000_0000_00_00_0_0; // flw
3'b011: ControlsD = `FCTRLW'b1_0_000_0001_00_00_0_0; // fld
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
7'b0100111: case(Funct3D)
3'b010: ControlsD = `FCTRLW'b0_0_000_0010_00_00_0_0; // fsw
3'b011: ControlsD = `FCTRLW'b0_0_000_0011_00_00_0_0; // fsd
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
7'b1000011: ControlsD = `FCTRLW'b1_0_001_0000_00_00_0_0; // fmadd
7'b1000111: ControlsD = `FCTRLW'b1_0_001_0001_00_00_0_0; // fmsub
7'b1001011: ControlsD = `FCTRLW'b1_0_001_0010_00_00_0_0; // fnmsub
7'b1001111: ControlsD = `FCTRLW'b1_0_001_0011_00_00_0_0; // fnmadd
7'b1010011: casez(Funct7D)
7'b00000??: ControlsD = `FCTRLW'b1_0_010_0000_00_00_0_0; // fadd
7'b00001??: ControlsD = `FCTRLW'b1_0_010_0001_00_00_0_0; // fsub
7'b00010??: ControlsD = `FCTRLW'b1_0_001_0100_00_00_0_0; // fmul
7'b00011??: ControlsD = `FCTRLW'b1_0_011_0000_00_00_1_0; // fdiv
7'b01011??: ControlsD = `FCTRLW'b1_0_011_0001_00_00_1_0; // fsqrt
7'b00100??: case(Funct3D)
3'b000: ControlsD = `FCTRLW'b1_0_100_0000_01_00_0_0; // fsgnj
3'b001: ControlsD = `FCTRLW'b1_0_100_0001_01_00_0_0; // fsgnjn
3'b010: ControlsD = `FCTRLW'b1_0_100_0010_01_00_0_0; // fsgnjx
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
7'b00101??: case(Funct3D)
3'b000: ControlsD = `FCTRLW'b1_0_100_0111_10_00_0_0; // fmin
3'b001: ControlsD = `FCTRLW'b1_0_100_0101_10_00_0_0; // fmax
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
7'b10100??: case(Funct3D)
3'b010: ControlsD = `FCTRLW'b0_1_100_0010_00_00_0_0; // feq
3'b001: ControlsD = `FCTRLW'b0_1_100_0001_00_00_0_0; // flt
3'b000: ControlsD = `FCTRLW'b0_1_100_0011_00_00_0_0; // fle
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
7'b11100??: if (Funct3D == 3'b001)
ControlsD = `FCTRLW'b0_1_100_0000_00_10_0_0; // fclass
else if (Funct3D[1:0] == 2'b00) ControlsD = `FCTRLW'b0_1_100_0100_00_01_0_0; // fmv.x.w
else if (Funct3D[1:0] == 2'b01) ControlsD = `FCTRLW'b0_1_100_0101_00_01_0_0; // fmv.x.d
else ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
7'b1100000: case(Rs2D[0])
1'b0: ControlsD = `FCTRLW'b0_1_010_0110_00_00_0_0; // fcvt.s.w
1'b1: ControlsD = `FCTRLW'b0_1_010_0101_00_00_0_0; // fcvt.s.wu
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
7'b1101000: case(Rs2D[0])
1'b0: ControlsD = `FCTRLW'b1_1_010_0100_00_00_0_0; // fcvt.w.s
1'b1: ControlsD = `FCTRLW'b1_1_010_0101_00_00_0_0; // fcvt.wu.s
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
7'b1111000: ControlsD = `FCTRLW'b1_0_100_0000_00_00_0_0; // fmv.w.x
7'b0100000: ControlsD = `FCTRLW'b1_0_010_0010_00_00_0_0; // fcvt.s.d
7'b1100001: case(Rs2D[0])
1'b0: ControlsD = `FCTRLW'b0_1_010_1110_00_00_0_0; // fcvt.d.w
1'b1: ControlsD = `FCTRLW'b0_1_010_1111_00_00_0_0; // fcvt.d.wu
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
7'b1101001: case(Rs2D[0])
1'b0: ControlsD = `FCTRLW'b1_0_010_1100_00_00_0_0; // fcvt.w.d
1'b1: ControlsD = `FCTRLW'b1_0_010_1101_00_00_0_0; // fcvt.wu.d
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
7'b1111001: ControlsD = `FCTRLW'b1_0_100_0001_00_00_0_0; // fmv.d.x
7'b0100001: ControlsD = `FCTRLW'b1_0_010_1000_00_00_0_0; // fcvt.d.s
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
default: ControlsD = `FCTRLW'b0_0_000_0000_00_00_0_1; // non-implemented instruction
endcase
// unswizzle control bits
assign {FWriteEnD, FWriteIntD, FResultSelD, FOpCtrlD, FResSelD, FIntResSelD, FDivStartD, IllegalFPUInstrD} = ControlsD;
// if dynamic rounding, choose FRM_REGW
assign FrmD = &Funct3D ? FRM_REGW : Funct3D;
//all subsequent logic is based on the table present
//in Section 5 of Wally Architecture Specification
//write is enabled for all fp instruciton op codes
//sans fp load
always_comb begin
//case statement is easier to modify
//in case of errors
case(OpD)
//fp instructions sans load
7'b1010011 : IsFPD = 1'b1;
7'b1000011 : IsFPD = 1'b1;
7'b1000111 : IsFPD = 1'b1;
7'b1001011 : IsFPD = 1'b1;
7'b1001111 : IsFPD = 1'b1;
7'b0100111 : IsFPD = 1'b1;
7'b0000111 : IsFPD = 1'b1;// KEP change 7'b1010011 to 7'b0000111
default : IsFPD = 1'b0;
endcase
end
//useful intermediary signals
//
//(mult only not supported in current datapath)
//set third FMA operand to zero in this case
//(or equivalent)
always_comb begin
//checks all but FMA/store/load
IllegalFPUInstr2D = 0;
FDivStartD = 1'b0;
if(OpD == 7'b1010011) begin
casez(Funct7D)
//compare
7'b10100?? : FResultSelD = 3'b001;
//div/sqrt
7'b0?011?? : begin FResultSelD = 3'b000; FDivStartD = 1'b1; end
//add/sub
7'b0000??? : FResultSelD = 3'b100;
//mult
7'b00010?? : FResultSelD = 3'b010;
//convert (not precision)
7'b110?0?? : FResultSelD = 3'b100;
//convert (precision)
7'b010000? : FResultSelD = 3'b100;
//Min/Max
7'b00101?? : FResultSelD = 3'b001;
//sign injection
7'b00100?? : FResultSelD = 3'b011;
//classify //only if funct3 = 001
7'b11100?? : if(Funct3D == 3'b001) FResultSelD = 3'b101;
//output ReadData1
else if (Funct7D[1] == 0) FResultSelD = 3'b111;
//output SrcW
7'b111100? : FResultSelD = 3'b110;
default : begin FResultSelD = 3'b0; IllegalFPUInstr2D = 1'b1; end
endcase
end
//FMA/store/load
else begin
case(OpD)
//4 FMA instructions
7'b1000011 : FResultSelD = 3'b010;
7'b1000111 : FResultSelD = 3'b010;
7'b1001011 : FResultSelD = 3'b010;
7'b1001111 : FResultSelD = 3'b010;
//store
7'b0100111 : FResultSelD = 3'b111;
//load
7'b0000111 : FResultSelD = 3'b111;
default : begin FResultSelD = 3'b0; IllegalFPUInstr2D = 1'b1; end
endcase
end
end
assign FOutputInput2D = OpD == 7'b0100111;
assign FMemRWD[0] = FOutputInput2D;
assign FMemRWD[1] = OpD == 7'b0000111;
//register is chosen based on operation performed
//----
//write selection is chosen in the same way as
//register selection
//
// reg/write sel logic and assignment
//
// 3'b000 = div/sqrt
// 3'b001 = cmp
// 3'b010 = fma/mult
// 3'b011 = sgn inj
// 3'b100 = add/sub/cnvt
// 3'b101 = classify
// 3'b110 = output SrcAW
// 3'b111 = output ReadData1
//
//reg select
//this value is used enough to be shorthand
//operation control for each fp operation
//has to be expanded over standard to account for
//integrated fpadd/cvt
//
//will integrate FMA opcodes into design later
//
//conversion instructions will
//also need to be added later as I find the opcode
//version I used for this repo
//let's do separate SOP for each type of operation
// assign FOpCtrlD[3] = 1'b0;
//
//
always_comb begin
IllegalFPUInstr1D = 0;
FInput3UsedD = 0;
case (FResultSelD)
// div/sqrt
// Precision
// 0-single
// 1-double
assign FmtD = FResultSelD == 3'b000 ? Funct3D[0] : Funct7D[0];
// div/sqrt
// fdiv = ???0
// fsqrt = ???1
3'b000 : begin FOpCtrlD = {3'b0, Funct7D[5]}; FInput2UsedD = ~Funct7D[5]; end
// cmp
// cmp
// fmin = ?111
// fmax = ?101
// feq = ?010
// flt = ?001
// fle = ?011
// {?, is min or max, is eq or le, is lt or le}
3'b001 : begin FOpCtrlD = {1'b0, Funct7D[2], ~Funct3D[0], ~(|Funct3D[2:1])}; FInput2UsedD = 1'b1; end
//fma/mult
//fma/mult
// fmadd = ?000
// fmsub = ?001
// fnmsub = ?010 -(a*b)+c
// fnmadd = ?011 -(a*b)-c
// fmul = ?100
// {?, is mul, is negitive, is sub}
3'b010 : begin FOpCtrlD = {1'b0, OpD[4:2]}; FInput2UsedD = 1'b1; FInput3UsedD = ~OpD[4]; end
// sgn inj
// sgn inj
// fsgnj = ??00
// fsgnjn = ??01
// fsgnjx = ??10
3'b011 : begin FOpCtrlD = {2'b0, Funct3D[1:0]}; FInput2UsedD = 1'b1; end
// add/sub/cnvt
// add/sub/cnvt
// fadd = 0000
// fsub = 0001
// fcvt.w.s = 0100
@ -188,35 +140,18 @@ module fctrl (
// fcvt.d.w = 1110
// fcvt.d.wu = 1111
// fcvt.d.s = 1000
// { is double and not add/sub, is to/from int, is to int or float to double, is unsigned or sub
3'b100 : begin FOpCtrlD = {Funct7D[0]&Funct7D[5], Funct7D[6], Funct7D[3] | (~Funct7D[6]&Funct7D[5]&~Funct7D[0]), (Rs2D[0]&Funct7D[5])|(Funct7D[2]&~Funct7D[5])}; FInput2UsedD = ~Funct7D[5]; end
// classify {?, ?, ?, ?}
3'b101 : begin FOpCtrlD = 4'b0; FInput2UsedD = 1'b0; end
// output SrcAW
// { is double and not add/sub, is to/from int, is to int or float to double, is unsigned or sub}
// fmv.w.x = ???0
// fmv.w.d = ???1
3'b110 : begin FOpCtrlD = {3'b0, Funct7D[0]}; FInput2UsedD = 1'b0; end
// output Input1
// flw = ?000
// fld = ?001
// fsw = ?010 // output Input2
// fsd = ?011 // output Input2
// fsw = ?010
// fsd = ?011
// fmv.x.w = ?100
// fmv.x.d = ?101
// {?, is mv, is store, is double or fmv}
3'b111 : begin FOpCtrlD = {1'b0, OpD[6:5], Funct3D[0] | (OpD[6]&Funct7D[0])}; FInput2UsedD = OpD[5]; end
default : begin FOpCtrlD = 4'b0; IllegalFPUInstr1D = 1'b1; FInput2UsedD = 1'b0; end
endcase
end
//precision
assign FmtD = (~&FResultSelD & Funct7D[0]) | (&FResultSelD & FOpCtrlD[0]);
assign IllegalFPUInstrD = IllegalFPUInstr1D | IllegalFPUInstr2D;
//write to integer source if conv to int occurs
//AND of Funct7 for int results
// is add/cvt and is to int or is classify or is cmp and not max/min or is output ReadData1 and is mv
assign FWriteIntD = ((FResultSelD == 3'b100)&Funct7D[3]) | (FResultSelD == 3'b101) | ((FResultSelD == 3'b001)&~Funct7D[2]) | ((FResultSelD == 3'b111)&OpD[6]);
// if not writting to int reg and not a store function and not move
assign FWriteEnD = ~FWriteIntD & ~OpD[5] & ~((FResultSelD == 3'b111)&OpD[6]) & IsFPD;
endmodule

View File

@ -1,111 +1,111 @@
module fma1(
input logic [63:0] X, // X
input logic [63:0] Y, // Y
input logic [63:0] Z, // Z
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtE, // precision 1 = double 0 = single
output logic [105:0] ProdManE, // 1.X frac * 1.Y frac
output logic [161:0] AlignedAddendE, // Z aligned for addition
output logic [12:0] ProdExpE, // X exponent + Y exponent - bias
output logic AddendStickyE, // sticky bit that is calculated during alignment
output logic KillProdE, // set the product to zero before addition if the product is too small to matter
output logic XZeroE, YZeroE, ZZeroE, // inputs are zero
output logic XInfE, YInfE, ZInfE, // inputs are infinity
output logic XNaNE, YNaNE, ZNaNE); // inputs are NaN
input logic [63:0] X, // X
input logic [63:0] Y, // Y
input logic [63:0] Z, // Z
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtE, // precision 1 = double 0 = single
output logic [105:0] ProdManE, // 1.X frac * 1.Y frac
output logic [161:0] AlignedAddendE, // Z aligned for addition
output logic [12:0] ProdExpE, // X exponent + Y exponent - bias
output logic AddendStickyE, // sticky bit that is calculated during alignment
output logic KillProdE, // set the product to zero before addition if the product is too small to matter
output logic XZeroE, YZeroE, ZZeroE, // inputs are zero
output logic XInfE, YInfE, ZInfE, // inputs are infinity
output logic XNaNE, YNaNE, ZNaNE); // inputs are NaN
logic [51:0] XFrac,YFrac,ZFrac; // input fraction
logic [52:0] XMan,YMan,ZMan; // input mantissa (with leading one)
logic [12:0] XExp,YExp,ZExp; // input exponents
logic XSgn,YSgn,ZSgn; // input signs
logic [12:0] AlignCnt; // how far to shift the addend to align with the product
logic [211:0] ZManShifted; // output of the alignment shifter including sticky bit
logic [211:0] ZManPreShifted; // input to the alignment shifter
logic XDenorm, YDenorm, ZDenorm; // inputs are denormal
logic [63:0] Addend; // value to add (Z or zero)
logic [12:0] Bias; // 1023 for double, 127 for single
logic XExpZero, YExpZero, ZExpZero; // input exponent zero
logic XFracZero, YFracZero, ZFracZero; // input fraction zero
logic XExpMax, YExpMax, ZExpMax; // input exponent all 1s
logic [51:0] XFrac,YFrac,ZFrac; // input fraction
logic [52:0] XMan,YMan,ZMan; // input mantissa (with leading one)
logic [12:0] XExp,YExp,ZExp; // input exponents
logic XSgn,YSgn,ZSgn; // input signs
logic [12:0] AlignCnt; // how far to shift the addend to align with the product
logic [213:0] ZManShifted; // output of the alignment shifter including sticky bit
logic [213:0] ZManPreShifted; // input to the alignment shifter
logic XDenorm, YDenorm, ZDenorm; // inputs are denormal
logic [63:0] Addend; // value to add (Z or zero)
logic [12:0] Bias; // 1023 for double, 127 for single
logic XExpZero, YExpZero, ZExpZero; // input exponent zero
logic XFracZero, YFracZero, ZFracZero; // input fraction zero
logic XExpMax, YExpMax, ZExpMax; // input exponent all 1s
///////////////////////////////////////////////////////////////////////////////
// split inputs into the sign bit, fraction, and exponent to handle single or double precision
// - single precision is in the top half of the inputs
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// split inputs into the sign bit, fraction, and exponent to handle single or double precision
// - single precision is in the top half of the inputs
///////////////////////////////////////////////////////////////////////////////
// Set addend to zero if FMUL instruction
assign Addend = FOpCtrlE[2] ? 64'b0 : Z;
// Set addend to zero if FMUL instruction
assign Addend = FOpCtrlE[2] ? 64'b0 : Z;
assign XSgn = X[63];
assign YSgn = Y[63];
assign ZSgn = Addend[63];
assign XSgn = X[63];
assign YSgn = Y[63];
assign ZSgn = Addend[63];
assign XExp = FmtE ? {2'b0, X[62:52]} : {5'b0, X[62:55]};
assign YExp = FmtE ? {2'b0, Y[62:52]} : {5'b0, Y[62:55]};
assign ZExp = FmtE ? {2'b0, Addend[62:52]} : {5'b0, Addend[62:55]};
assign XExp = FmtE ? {2'b0, X[62:52]} : {5'b0, X[62:55]};
assign YExp = FmtE ? {2'b0, Y[62:52]} : {5'b0, Y[62:55]};
assign ZExp = FmtE ? {2'b0, Addend[62:52]} : {5'b0, Addend[62:55]};
assign XFrac = FmtE ? X[51:0] : {X[54:32], 29'b0};
assign YFrac = FmtE ? Y[51:0] : {Y[54:32], 29'b0};
assign ZFrac = FmtE ? Addend[51:0] : {Addend[54:32], 29'b0};
assign XMan = {~XExpZero, XFrac};
assign YMan = {~YExpZero, YFrac};
assign ZMan = {~ZExpZero, ZFrac};
assign XFrac = FmtE ? X[51:0] : {X[54:32], 29'b0};
assign YFrac = FmtE ? Y[51:0] : {Y[54:32], 29'b0};
assign ZFrac = FmtE ? Addend[51:0] : {Addend[54:32], 29'b0};
assign XMan = {~XExpZero, XFrac};
assign YMan = {~YExpZero, YFrac};
assign ZMan = {~ZExpZero, ZFrac};
assign Bias = FmtE ? 13'h3ff : 13'h7f;
assign Bias = FmtE ? 13'h3ff : 13'h7f;
///////////////////////////////////////////////////////////////////////////////
// determine if an input is a special value
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// determine if an input is a special value
///////////////////////////////////////////////////////////////////////////////
assign XExpZero = ~|XExp;
assign YExpZero = ~|YExp;
assign ZExpZero = ~|ZExp;
assign XFracZero = ~|XFrac;
assign YFracZero = ~|YFrac;
assign ZFracZero = ~|ZFrac;
assign XExpZero = ~|XExp;
assign YExpZero = ~|YExp;
assign ZExpZero = ~|ZExp;
assign XFracZero = ~|XFrac;
assign YFracZero = ~|YFrac;
assign ZFracZero = ~|ZFrac;
assign XExpMax = FmtE ? &XExp[10:0] : &XExp[7:0];
assign YExpMax = FmtE ? &YExp[10:0] : &YExp[7:0];
assign ZExpMax = FmtE ? &ZExp[10:0] : &ZExp[7:0];
assign XNaNE = XExpMax & ~XFracZero;
assign YNaNE = YExpMax & ~YFracZero;
assign ZNaNE = ZExpMax & ~ZFracZero;
assign XExpMax = FmtE ? &XExp[10:0] : &XExp[7:0];
assign YExpMax = FmtE ? &YExp[10:0] : &YExp[7:0];
assign ZExpMax = FmtE ? &ZExp[10:0] : &ZExp[7:0];
assign XNaNE = XExpMax & ~XFracZero;
assign YNaNE = YExpMax & ~YFracZero;
assign ZNaNE = ZExpMax & ~ZFracZero;
assign XDenorm = XExpZero & ~XFracZero;
assign YDenorm = YExpZero & ~YFracZero;
assign ZDenorm = ZExpZero & ~ZFracZero;
assign XDenorm = XExpZero & ~XFracZero;
assign YDenorm = YExpZero & ~YFracZero;
assign ZDenorm = ZExpZero & ~ZFracZero;
assign XInfE = XExpMax & XFracZero;
assign YInfE = YExpMax & YFracZero;
assign ZInfE = ZExpMax & ZFracZero;
assign XInfE = XExpMax & XFracZero;
assign YInfE = YExpMax & YFracZero;
assign ZInfE = ZExpMax & ZFracZero;
assign XZeroE = XExpZero & XFracZero;
assign YZeroE = YExpZero & YFracZero;
assign ZZeroE = ZExpZero & ZFracZero;
assign XZeroE = XExpZero & XFracZero;
assign YZeroE = YExpZero & YFracZero;
assign ZZeroE = ZExpZero & ZFracZero;
///////////////////////////////////////////////////////////////////////////////
// Calculate the product
// - When multipliying two fp numbers, add the exponents
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
// - Denormal numbers have an an exponent value of 1, however they are
// represented with an exponent of 0. add one if there is a denormal number
///////////////////////////////////////////////////////////////////////////////
// verilator lint_off WIDTH
assign ProdExpE = (XZeroE|YZeroE) ? 13'b0 :
XExp + YExp - Bias + XDenorm + YDenorm;
///////////////////////////////////////////////////////////////////////////////
// Calculate the product
// - When multipliying two fp numbers, add the exponents
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
// - Denormal numbers have an an exponent value of 1, however they are
// represented with an exponent of 0. add one if there is a denormal number
///////////////////////////////////////////////////////////////////////////////
// verilator lint_off WIDTH
assign ProdExpE = (XZeroE|YZeroE) ? 13'b0 :
XExp + YExp - Bias + XDenorm + YDenorm;
// Calculate the product's mantissa
// - Add the assumed one. If the number is denormalized or zero, it does not have an assumed one.
assign ProdManE = XMan * YMan;
// Calculate the product's mantissa
// - Add the assumed one. If the number is denormalized or zero, it does not have an assumed one.
assign ProdManE = XMan * YMan;
@ -114,72 +114,71 @@ module fma1(
///////////////////////////////////////////////////////////////////////////////
// Alignment shifter
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Alignment shifter
///////////////////////////////////////////////////////////////////////////////
// determine the shift count for alignment
// - negitive means Z is larger, so shift Z left
// - positive means the product is larger, so shift Z right
// - Denormal numbers have an an exponent value of 1, however they are
// represented with an exponent of 0. add one to the exponent if it is a denormal number
assign AlignCnt = ProdExpE - ZExp - ZDenorm;
// verilator lint_on WIDTH
// determine the shift count for alignment
// - negitive means Z is larger, so shift Z left
// - positive means the product is larger, so shift Z right
// - Denormal numbers have an an exponent value of 1, however they are
// represented with an exponent of 0. add one to the exponent if it is a denormal number
assign AlignCnt = ProdExpE - ZExp - ZDenorm;
// verilator lint_on WIDTH
// Defualt Addition without shifting
// | 55'b0 | 106'b(product) | 2'b0 |
// |1'b0| addnend |
// Defualt Addition without shifting
// | 55'b0 | 106'b(product) | 2'b0 |
// |1'b0| addnend |
// the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
assign ZManPreShifted = {55'b0, ZMan, 104'b0};
always_comb
begin
// If the product is too small to effect the sum, kill the product
// the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
assign ZManPreShifted = {55'b0, ZMan, 106'b0};
always_comb
begin
// If the product is too small to effect the sum, kill the product
// | 55'b0 | 106'b(product) | 2'b0 |
// | addnend |
if ($signed(AlignCnt) <= $signed(-13'd56)) begin
KillProdE = 1;
ZManShifted = {107'b0, ZMan, 52'b0};
AddendStickyE = ~(XZeroE|YZeroE);
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
if ($signed(AlignCnt) <= $signed(-13'd56)) begin
KillProdE = 1;
ZManShifted = ZManPreShifted;//{107'b0, ZMan, 54'b0};
AddendStickyE = ~(XZeroE|YZeroE);
// If the Addend is shifted left (negitive AlignCnt)
// If the Addend is shifted left (negitive AlignCnt)
// | 55'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else if($signed(AlignCnt) <= $signed(13'd0)) begin
KillProdE = 0;
ZManShifted = ZManPreShifted << -AlignCnt;
AddendStickyE = |(ZManShifted[49:0]);
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else if($signed(AlignCnt) <= $signed(13'd0)) begin
KillProdE = 0;
ZManShifted = ZManPreShifted << -AlignCnt;
AddendStickyE = |(ZManShifted[51:0]);
// If the Addend is shifted right (positive AlignCnt)
// If the Addend is shifted right (positive AlignCnt)
// | 55'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else if ($signed(AlignCnt)<=$signed(13'd104)) begin
KillProdE = 0;
ZManShifted = ZManPreShifted >> AlignCnt;
AddendStickyE = |(ZManShifted[49:0]);
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else if ($signed(AlignCnt)<=$signed(13'd106)) begin
KillProdE = 0;
ZManShifted = ZManPreShifted >> AlignCnt;
AddendStickyE = |(ZManShifted[51:0]);
// If the addend is too small to effect the addition
// - The addend has to shift two past the end of the addend to be considered too small
// - The 2 extra bits are needed for rounding
// If the addend is too small to effect the addition
// - The addend has to shift two past the end of the addend to be considered too small
// - The 2 extra bits are needed for rounding
// | 55'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else begin
KillProdE = 0;
ZManShifted = 0;
AddendStickyE = ~ZZeroE;
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else begin
KillProdE = 0;
ZManShifted = 0;
AddendStickyE = ~ZZeroE;
end
end
end
end
assign AlignedAddendE = ZManShifted[211:50];
endmodule
assign AlignedAddendE = ZManShifted[213:52];
endmodule

View File

@ -1,127 +1,131 @@
module fma2(
input logic [63:0] X, // X
input logic [63:0] Y, // Y
input logic [63:0] Z, // Z
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [2:0] FOpCtrlM, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtM, // precision 1 = double 0 = single
input logic [105:0] ProdManM, // 1.X frac * 1.Y frac
input logic [161:0] AlignedAddendM, // Z aligned for addition
input logic [12:0] ProdExpM, // X exponent + Y exponent - bias
input logic AddendStickyM, // sticky bit that is calculated during alignment
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
output logic [63:0] FmaResultM, // FMA final result
output logic [4:0] FmaFlagsM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
input logic [63:0] X, // X
input logic [63:0] Y, // Y
input logic [63:0] Z, // Z
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [2:0] FOpCtrlM, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtM, // precision 1 = double 0 = single
input logic [105:0] ProdManM, // 1.X frac * 1.Y frac
input logic [161:0] AlignedAddendM, // Z aligned for addition
input logic [12:0] ProdExpM, // X exponent + Y exponent - bias
input logic AddendStickyM, // sticky bit that is calculated during alignment
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
output logic [63:0] FmaResultM, // FMA final result
output logic [4:0] FmaFlagsM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
logic [51:0] ResultFrac; // Result fraction
logic [10:0] ResultExp; // Result exponent
logic ResultSgn; // Result sign
logic [10:0] ZExp; // input exponent
logic XSgn, YSgn, ZSgn; // input sign
logic PSgn; // product sign
logic [105:0] ProdMan2; // product being added
logic [162:0] AlignedAddend2; // possibly inverted aligned Z
logic [161:0] Sum; // positive sum
logic [162:0] PreSum; // possibly negitive sum
logic [12:0] SumExp; // exponent of the normalized sum
logic [12:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
logic [12:0] SumExpTmpMinus1; // SumExpTmp-1
logic [12:0] FullResultExp; // ResultExp with bits to determine sign and overflow
logic [53:0] NormSum; // normalized sum
logic [161:0] SumShifted; // sum shifted for normalization
logic [8:0] NormCnt; // output of the leading zero detector
logic NormSumSticky; // sticky bit calulated from the normalized sum
logic SumZero; // is the sum zero
logic NegSum; // is the sum negitive
logic InvZ; // invert Z if there is a subtraction (-product + Z or product - Z)
logic ResultDenorm; // is the result denormalized
logic Sticky; // Sticky bit
logic Plus1, Minus1, CalcPlus1, CalcMinus1; // do you add or subtract one for rounding
logic Invalid,Underflow,Overflow,Inexact; // flags
logic [8:0] DenormShift; // right shift if the result is denormalized
logic SubBySmallNum; // was there supposed to be a subtraction by a small number
logic [63:0] Addend; // value to add (Z or zero)
logic ZeroSgn; // the result's sign if the sum is zero
logic ResultSgnTmp; // the result's sign assuming the result is not zero
logic Guard, Round, LSBNormSum; // bits needed to determine rounding
logic [12:0] MaxExp; // maximum value of the exponent
logic [12:0] FracLen; // length of the fraction
logic SigNaN; // is an input a signaling NaN
logic UnderflowFlag; // Underflow singal used in FmaFlagsM (used to avoid a circular depencency)
logic [63:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
logic [51:0] ResultFrac; // Result fraction
logic [10:0] ResultExp; // Result exponent
logic ResultSgn; // Result sign
logic [10:0] ZExp; // input exponent
logic XSgn, YSgn, ZSgn; // input sign
logic PSgn; // product sign
logic [105:0] ProdMan2; // product being added
logic [162:0] AlignedAddend2; // possibly inverted aligned Z
logic [161:0] Sum; // positive sum
logic [162:0] PreSum; // possibly negitive sum
logic [12:0] SumExp; // exponent of the normalized sum
logic [12:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
logic [12:0] SumExpTmpMinus1; // SumExpTmp-1
logic [12:0] FullResultExp; // ResultExp with bits to determine sign and overflow
logic [54:0] NormSum; // normalized sum
logic [161:0] SumShifted; // sum shifted for normalization
logic [8:0] NormCnt; // output of the leading zero detector
logic NormSumSticky; // sticky bit calulated from the normalized sum
logic SumZero; // is the sum zero
logic NegSum; // is the sum negitive
logic InvZ; // invert Z if there is a subtraction (-product + Z or product - Z)
logic ResultDenorm; // is the result denormalized
logic Sticky; // Sticky bit
logic Plus1, Minus1, CalcPlus1, CalcMinus1; // do you add or subtract one for rounding
logic UfPlus1, UfCalcPlus1; // do you add one (for determining underflow flag)
logic Invalid,Underflow,Overflow,Inexact; // flags
logic [8:0] DenormShift; // right shift if the result is denormalized
logic SubBySmallNum; // was there supposed to be a subtraction by a small number
logic [63:0] Addend; // value to add (Z or zero)
logic ZeroSgn; // the result's sign if the sum is zero
logic ResultSgnTmp; // the result's sign assuming the result is not zero
logic Guard, Round, LSBNormSum; // bits needed to determine rounding
logic UfGuard, UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag
logic [12:0] MaxExp; // maximum value of the exponent
logic [12:0] FracLen; // length of the fraction
logic SigNaN; // is an input a signaling NaN
logic UnderflowFlag; // Underflow singal used in FmaFlagsM (used to avoid a circular depencency)
logic [63:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
///////////////////////////////////////////////////////////////////////////////
// Select input fields
// The following logic duplicates fma1 because it's cheaper to recompute than provide registers
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Select input fields
// The following logic duplicates fma1 because it's cheaper to recompute than provide registers
///////////////////////////////////////////////////////////////////////////////
// Set addend to zero if FMUL instruction
assign Addend = FOpCtrlM[2] ? 64'b0 : Z;
// Set addend to zero if FMUL instruction
assign Addend = FOpCtrlM[2] ? 64'b0 : Z;
// split inputs into the sign bit, and exponent to handle single or double precision
// - single precision is in the top half of the inputs
assign XSgn = X[63];
assign YSgn = Y[63];
assign ZSgn = Addend[63]^FOpCtrlM[0]; //Negate Z if subtraction
// split inputs into the sign bit, and exponent to handle single or double precision
// - single precision is in the top half of the inputs
assign XSgn = X[63];
assign YSgn = Y[63];
assign ZSgn = Addend[63]^FOpCtrlM[0]; //Negate Z if subtraction
assign ZExp = FmtM ? Addend[62:52] : {3'b0, Addend[62:55]};
assign ZExp = FmtM ? Addend[62:52] : {3'b0, Addend[62:55]};
// Calculate the product's sign
// Negate product's sign if FNMADD or FNMSUB
assign PSgn = XSgn ^ YSgn ^ FOpCtrlM[1];
// Calculate the product's sign
// Negate product's sign if FNMADD or FNMSUB
assign PSgn = XSgn ^ YSgn ^ FOpCtrlM[1];
///////////////////////////////////////////////////////////////////////////////
// Addition
///////////////////////////////////////////////////////////////////////////////
// Negate Z when doing one of the following opperations:
// -prod + Z
// prod - Z
assign InvZ = ZSgn ^ PSgn;
///////////////////////////////////////////////////////////////////////////////
// Addition
///////////////////////////////////////////////////////////////////////////////
// Negate Z when doing one of the following opperations:
// -prod + Z
// prod - Z
assign InvZ = ZSgn ^ PSgn;
// Choose an inverted or non-inverted addend - the one is added later
assign AlignedAddend2 = InvZ ? ~{1'b0, AlignedAddendM} : {1'b0, AlignedAddendM};
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
assign ProdMan2 = KillProdM ? 106'b0 : ProdManM;
// Choose an inverted or non-inverted addend - the one is added later
assign AlignedAddend2 = InvZ ? ~{1'b0, AlignedAddendM} : {1'b0, AlignedAddendM};
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
assign ProdMan2 = KillProdM ? 106'b0 : ProdManM;
// Do the addition
// - add one to negate if the added was inverted
// - the 2 extra bits at the begining and end are needed for rounding
assign PreSum = AlignedAddend2 + {55'b0, ProdMan2, 2'b0} + {162'b0, InvZ};
// Is the sum negitive
assign NegSum = PreSum[162];
// If the sum is negitive, negate the sum.
assign Sum = NegSum ? -PreSum[161:0] : PreSum[161:0];
// Do the addition
// - add one to negate if the added was inverted
// - the 2 extra bits at the begining and end are needed for rounding
assign PreSum = AlignedAddend2 + {55'b0, ProdMan2, 2'b0} + {162'b0, InvZ};
// Is the sum negitive
assign NegSum = PreSum[162];
// If the sum is negitive, negate the sum.
assign Sum = NegSum ? -PreSum[161:0] : PreSum[161:0];
///////////////////////////////////////////////////////////////////////////////
// Leading one detector
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Leading one detector
///////////////////////////////////////////////////////////////////////////////
//*** replace with non-behavoral code
logic [8:0] i;
always_comb begin
i = 0;
while (~Sum[161-i] && $unsigned(i) <= $unsigned(9'd161)) i = i+1; // search for leading one
NormCnt = i+1; // compute shift count
end
//*** replace with non-behavoral code
logic [8:0] i;
always_comb begin
i = 0;
while (~Sum[161-i] && $unsigned(i) <= $unsigned(9'd161)) i = i+1; // search for leading one
NormCnt = i+1; // compute shift count
end
@ -133,112 +137,127 @@ module fma2(
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
// Determine if the sum is zero
assign SumZero = ~(|Sum);
// Determine if the sum is zero
assign SumZero = ~(|Sum);
// determine the length of the fraction based on precision
assign FracLen = FmtM ? 13'd52 : 13'd23;
// determine the length of the fraction based on precision
assign FracLen = FmtM ? 13'd52 : 13'd23;
// Determine if the result is denormal
assign SumExpTmp = KillProdM ? {2'b0, ZExp} : ProdExpM + -({4'b0, NormCnt} - 13'd56);
assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
// Determine if the result is denormal
assign SumExpTmp = KillProdM ? {2'b0, ZExp} : ProdExpM + -({4'b0, NormCnt} - 13'd56);
assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
// Determine the shift needed for denormal results
assign SumExpTmpMinus1 = SumExpTmp-1;
assign DenormShift = ResultDenorm ? SumExpTmpMinus1[8:0] : 9'b0;
// Determine the shift needed for denormal results
assign SumExpTmpMinus1 = SumExpTmp-1;
assign DenormShift = ResultDenorm ? SumExpTmpMinus1[8:0] : 9'b0;
// Normalize the sum
assign SumShifted = SumZero ? 162'b0 : Sum << NormCnt+DenormShift;
assign NormSum = SumShifted[161:108];
// Calculate the sticky bit
assign NormSumSticky = FmtM ? (|SumShifted[107:0]) : (|SumShifted[136:0]);
assign Sticky = AddendStickyM | NormSumSticky;
// Normalize the sum
assign SumShifted = SumZero ? 162'b0 : Sum << NormCnt+DenormShift;
assign NormSum = SumShifted[161:107];
// Calculate the sticky bit
assign NormSumSticky = FmtM ? (|SumShifted[107:0]) : (|SumShifted[136:0]);
assign Sticky = AddendStickyM | NormSumSticky;
// Determine sum's exponent
assign SumExp = SumZero ? 13'b0 :
ResultDenorm ? 13'b0 :
SumExpTmp;
// Determine sum's exponent
assign SumExp = SumZero ? 13'b0 :
ResultDenorm ? 13'b0 :
SumExpTmp;
///////////////////////////////////////////////////////////////////////////////
// Rounding
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Rounding
///////////////////////////////////////////////////////////////////////////////
// round to nearest even
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1 if result is odd (LSBNormSum = 1)
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
// round to nearest even
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1 if result is odd (LSBNormSum = 1)
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
// round to zero - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
// round to zero - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
// round to -infinity
// - Plus1 if negative unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
// round to -infinity
// - Plus1 if negative unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
// round to infinity
// - Plus1 if positive unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a negative result with guard and round bits of 0
// round to infinity
// - Plus1 if positive unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a negative result with guard and round bits of 0
// round to nearest max magnitude
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
// round to nearest max magnitude
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
// determine guard, round, and least significant bit of the result
assign Guard = FmtM ? NormSum[1] : NormSum[30];
assign Round = FmtM ? NormSum[0] : NormSum[29];
assign LSBNormSum = FmtM ? NormSum[2] : NormSum[31];
// determine guard, round, and least significant bit of the result
assign Guard = FmtM ? NormSum[2] : NormSum[31];
assign Round = FmtM ? NormSum[1] : NormSum[30];
assign LSBNormSum = FmtM ? NormSum[3] : NormSum[32];
// Deterimine if a small number was supposed to be subtrated
assign SubBySmallNum = AddendStickyM&InvZ&~(NormSumSticky)&~ZZeroM;
// used to determine underflow flag
assign UfGuard = FmtM ? NormSum[1] : NormSum[30];
assign UfRound = FmtM ? NormSum[0] : NormSum[29];
assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[31];
always_comb begin
// Determine if you add 1
case (FrmM)
3'b000: CalcPlus1 = Guard & (Round | (Sticky&~(~Round&SubBySmallNum)) | (~Round&~Sticky&LSBNormSum&~SubBySmallNum));//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round down
3'b011: CalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round up
3'b100: CalcPlus1 = (Guard & (Round | (Sticky&~(~Round&SubBySmallNum)) | (~Round&~Sticky&~SubBySmallNum)));//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
// Determine if you subtract 1
case (FrmM)
3'b000: CalcMinus1 = 0;//round to nearest even
3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
3'b010: CalcMinus1 = ~ResultSgn & ~Guard & ~Round & SubBySmallNum;//round down
3'b011: CalcMinus1 = ResultSgn & ~Guard & ~Round & SubBySmallNum;//round up
3'b100: CalcMinus1 = 0;//round to nearest max magnitude
default: CalcMinus1 = 1'bx;
endcase
end
// Deterimine if a small number was supposed to be subtrated
assign SubBySmallNum = AddendStickyM&InvZ&~(NormSumSticky)&~ZZeroM;
// If an answer is exact don't round
assign Plus1 = CalcPlus1 & (Sticky | Guard | Round);
assign Minus1 = CalcMinus1 & (Sticky | Guard | Round);
always_comb begin
// Determine if you add 1
case (FrmM)
3'b000: CalcPlus1 = Guard & (Round | ((Sticky|UfGuard)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfGuard)&LSBNormSum&~SubBySmallNum));//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round down
3'b011: CalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round up
3'b100: CalcPlus1 = (Guard & (Round | ((Sticky|UfGuard)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfGuard)&~SubBySmallNum)));//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
// Determine if you add 1 (for underflow flag)
case (FrmM)
3'b000: UfCalcPlus1 = UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&UfLSBNormSum&~SubBySmallNum));//round to nearest even
3'b001: UfCalcPlus1 = 0;//round to zero
3'b010: UfCalcPlus1 = ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round down
3'b011: UfCalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round up
3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&~SubBySmallNum)));//round to nearest max magnitude
default: UfCalcPlus1 = 1'bx;
endcase
// Determine if you subtract 1
case (FrmM)
3'b000: CalcMinus1 = 0;//round to nearest even
3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
3'b010: CalcMinus1 = ~ResultSgn & ~Guard & ~Round & SubBySmallNum;//round down
3'b011: CalcMinus1 = ResultSgn & ~Guard & ~Round & SubBySmallNum;//round up
3'b100: CalcMinus1 = 0;//round to nearest max magnitude
default: CalcMinus1 = 1'bx;
endcase
end
// Compute rounded result
logic [64:0] RoundAdd;
logic [51:0] NormSumTruncated;
assign RoundAdd = FmtM ? Minus1 ? {65{1'b1}} : {64'b0, Plus1} :
Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0};
assign NormSumTruncated = FmtM ? NormSum[53:2] : {NormSum[53:31], 29'b0};
// If an answer is exact don't round
assign Plus1 = CalcPlus1 & (Sticky | UfGuard | Guard | Round);
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard | UfRound);
assign Minus1 = CalcMinus1 & (Sticky | UfGuard | Guard | Round);
assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
// Compute rounded result
logic [64:0] RoundAdd;
logic [51:0] NormSumTruncated;
assign RoundAdd = FmtM ? Minus1 ? {65{1'b1}} : {64'b0, Plus1} :
Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0};
assign NormSumTruncated = FmtM ? NormSum[54:3] : {NormSum[54:32], 29'b0};
assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
assign ResultExp = FullResultExp[10:0];
@ -247,58 +266,57 @@ module fma2(
///////////////////////////////////////////////////////////////////////////////
// Sign calculation
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Sign calculation
///////////////////////////////////////////////////////////////////////////////
// Determine the sign if the sum is zero
// if cancelation then 0 unless round to -infinity
// otherwise psign
assign ZeroSgn = (PSgn^ZSgn)&~Underflow ? FrmM == 3'b010 : PSgn;
// Determine the sign if the sum is zero
// if cancelation then 0 unless round to -infinity
// otherwise psign
assign ZeroSgn = (PSgn^ZSgn)&~Underflow ? FrmM == 3'b010 : PSgn;
// is the result negitive
// if p - z is the Sum negitive
// if -p + z is the Sum positive
// if -p - z then the Sum is negitive
assign ResultSgnTmp = InvZ&(ZSgn)&NegSum | InvZ&PSgn&~NegSum | ((ZSgn)&PSgn);
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
// is the result negitive
// if p - z is the Sum negitive
// if -p + z is the Sum positive
// if -p - z then the Sum is negitive
assign ResultSgnTmp = InvZ&(ZSgn)&NegSum | InvZ&PSgn&~NegSum | ((ZSgn)&PSgn);
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
// Set Invalid flag for following cases:
// 1) Inf - Inf (unless x or y is NaN)
// 2) 0 * Inf
// 3) any input is a signaling NaN
assign MaxExp = FmtM ? 13'd2047 : 13'd255;
assign SigNaN = FmtM ? (XNaNM&~X[51]) | (YNaNM&~Y[51]) | (ZNaNM&~Addend[51]) :
(XNaNM&~X[54]) | (YNaNM&~Y[54]) | (ZNaNM&~Addend[54]);
assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgn ^ ZSgn) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
// Set Overflow flag if the number is too big to be represented
// - Don't set the overflow flag if an overflowed result isn't outputed
assign Overflow = FullResultExp >= MaxExp & ~FullResultExp[12]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Invalid flag for following cases:
// 1) any input is a signaling NaN
// 2) Inf - Inf (unless x or y is NaN)
// 3) 0 * Inf
assign MaxExp = FmtM ? 13'd2047 : 13'd255;
assign SigNaN = FmtM ? (XNaNM&~X[51]) | (YNaNM&~Y[51]) | (ZNaNM&~Addend[51]) :
(XNaNM&~X[54]) | (YNaNM&~Y[54]) | (ZNaNM&~Addend[54]);
assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgn ^ ZSgn) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
// Set Overflow flag if the number is too big to be represented
// - Don't set the overflow flag if an overflowed result isn't outputed
assign Overflow = FullResultExp >= MaxExp & ~FullResultExp[12]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Underflow flag if the number is too small to be represented in normal numbers
// - Don't set the underflow flag if the result is exact
assign Underflow = (SumExp[12] | ((SumExp == 0) & (Round|Guard|Sticky)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
//assign UnderflowFlag = (Underflow | (FullResultExp == 0)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM)&(Round|Guard|Sticky)) & ~(FullResultExp == 1);
assign UnderflowFlag = (Underflow | (FullResultExp == 0)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM)&(Round|Guard|Sticky)) & ~(FullResultExp == 1);
// Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
// - Don't set the underflow flag if an underflowed result isn't outputed
assign Inexact = (Sticky|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Underflow flag if the number is too small to be represented in normal numbers
// - Don't set the underflow flag if the result is exact
assign Underflow = (SumExp[12] | ((SumExp == 0) & (Round|Guard|Sticky|UfGuard)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign UnderflowFlag = (FullResultExp[12] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
// - Don't set the underflow flag if an underflowed result isn't outputed
assign Inexact = (Sticky|UfGuard|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Combine flags
// - FMA can't set the Divide by zero flag
// - Don't set the underflow flag if the result was rounded up to a normal number
assign FmaFlagsM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact};
// Combine flags
// - FMA can't set the Divide by zero flag
// - Don't set the underflow flag if the result was rounded up to a normal number
assign FmaFlagsM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact};
@ -306,31 +324,31 @@ module fma2(
///////////////////////////////////////////////////////////////////////////////
// Select the result
///////////////////////////////////////////////////////////////////////////////
assign XNaNResult = FmtM ? {XSgn, X[62:52], 1'b1,X[50:0]} : {XSgn, X[62:55], 1'b1,X[53:0]};
assign YNaNResult = FmtM ? {YSgn, Y[62:52], 1'b1,Y[50:0]} : {YSgn, Y[62:55], 1'b1,Y[53:0]};
assign ZNaNResult = FmtM ? {ZSgn, Addend[62:52], 1'b1,Addend[50:0]} : {ZSgn, Addend[62:55], 1'b1,Addend[53:0]};
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, 11'h7fe, {52{1'b1}}} :
{ResultSgn, 11'h7ff, 52'b0} :
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, 8'hfe, {23{1'b1}}, 32'b0} :
{ResultSgn, 8'hff, 55'b0};
assign InvalidResult = FmtM ? {ResultSgn, 11'h7ff, 1'b1, 51'b0} : {ResultSgn, 8'hff, 1'b1, 54'b0};
assign KillProdResult = FmtM ?{ResultSgn, Addend[62:0] - {62'b0, (Minus1&AddendStickyM)}} + {62'b0, (Plus1&AddendStickyM)} : {ResultSgn, Addend[62:32] - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}, 32'b0};
assign UnderflowResult = FmtM ? {ResultSgn, 63'b0} + {63'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))} : {{ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}, 32'b0};
assign FmaResultM = XNaNM ? XNaNResult :
YNaNM ? YNaNResult :
ZNaNM ? ZNaNResult :
Invalid ? InvalidResult : // has to be before inf
XInfM ? {PSgn, X[62:0]} :
YInfM ? {PSgn, Y[62:0]} :
ZInfM ? {ZSgn, Addend[62:0]} :
Overflow ? OverflowResult :
KillProdM ? KillProdResult : // has to be after Underflow
Underflow & ~ResultDenorm ? UnderflowResult :
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
{ResultSgn, ResultExp[7:0], ResultFrac, 3'b0};
///////////////////////////////////////////////////////////////////////////////
// Select the result
///////////////////////////////////////////////////////////////////////////////
assign XNaNResult = FmtM ? {XSgn, X[62:52], 1'b1,X[50:0]} : {XSgn, X[62:55], 1'b1,X[53:0]};
assign YNaNResult = FmtM ? {YSgn, Y[62:52], 1'b1,Y[50:0]} : {YSgn, Y[62:55], 1'b1,Y[53:0]};
assign ZNaNResult = FmtM ? {ZSgn, Addend[62:52], 1'b1,Addend[50:0]} : {ZSgn, Addend[62:55], 1'b1,Addend[53:0]};
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, 11'h7fe, {52{1'b1}}} :
{ResultSgn, 11'h7ff, 52'b0} :
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, 8'hfe, {23{1'b1}}, 32'b0} :
{ResultSgn, 8'hff, 55'b0};
assign InvalidResult = FmtM ? {ResultSgn, 11'h7ff, 1'b1, 51'b0} : {ResultSgn, 8'hff, 1'b1, 54'b0};
assign KillProdResult = FmtM ?{ResultSgn, Addend[62:0] - {62'b0, (Minus1&AddendStickyM)}} + {62'b0, (Plus1&AddendStickyM)} : {ResultSgn, Addend[62:32] - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}, 32'b0};
assign UnderflowResult = FmtM ? {ResultSgn, 63'b0} + {63'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))} : {{ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}, 32'b0};
assign FmaResultM = XNaNM ? XNaNResult :
YNaNM ? YNaNResult :
ZNaNM ? ZNaNResult :
Invalid ? InvalidResult : // has to be before inf
XInfM ? {PSgn, X[62:0]} :
YInfM ? {PSgn, Y[62:0]} :
ZInfM ? {ZSgn, Addend[62:0]} :
Overflow ? OverflowResult :
KillProdM ? KillProdResult : // has to be after Underflow
Underflow & ~ResultDenorm ? UnderflowResult :
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
{ResultSgn, ResultExp[7:0], ResultFrac, 3'b0};

View File

@ -34,7 +34,6 @@ module fpu (
input logic [`XLEN-1:0] SrcAM, // Integer input being written into fpreg
input logic StallE, StallM, StallW,
input logic FlushE, FlushM, FlushW,
output logic IsFPD, IsFPE, // Read/write enable for memory {read, write}
output logic FStallD, // Stall the decode stage if Div/Sqrt instruction
output logic FWriteIntE, FWriteIntM, FWriteIntW, // Write integer register enable
output logic [`XLEN-1:0] FWriteDataE, // Data to be written to memory
@ -59,8 +58,8 @@ module fpu (
logic SrcZUsedD; // Is input 3 used
logic [2:0] FResultSelD, FResultSelE, FResultSelM, FResultSelW; // Select FP result
logic [3:0] FOpCtrlD, FOpCtrlE, FOpCtrlM, FOpCtrlW; // Select which opperation to do in each component
logic SelLoadInputE, SelLoadInputM; // Select which adress to load when single precision
logic FInput2UsedD, FInput3UsedD;
logic [1:0] FResSelD, FResSelE, FResSelM;
logic [1:0] FIntResSelD, FIntResSelE, FIntResSelM;
logic [4:0] Adr1E, Adr2E, Adr3E;
// regfile signals
@ -132,7 +131,8 @@ module fpu (
// fsgn signals
logic [63:0] SgnResultE, SgnResultM, SgnResultW;
logic [4:0] SgnFlagsE, SgnFlagsM, SgnFlagsW;
logic [63:0] FResM;
logic [63:0] FResM, FResW;
logic FFlgM, FFlgW;
// instantiation of W stage regfile signals
logic [63:0] AlignedSrcAM, ForwardSrcAM, SrcAW;
@ -167,38 +167,19 @@ module fpu (
//*****************
// other D/E pipe registers
//*****************
// flopenrc #(64) DEReg14(clk, reset, FlushE, ~StallE, FPUResult64W, FPUResult64E);
// flopenrc #(1) CtrlRegE1(clk, reset, FlushE, ~StallE, FWriteEnD, FWriteEnE);
// flopenrc #(3) CtrlRegE2(clk, reset, FlushE, ~StallE, FResultSelD, FResultSelE);
// flopenrc #(3) CtrlRegE3(clk, reset, FlushE, ~StallE, FrmD, FrmE);
// flopenrc #(1) CtrlRegE4(clk, reset, FlushE, ~StallE, FmtD, FmtE);
// flopenrc #(5) CtrlRegE5(clk, reset, FlushE, ~StallE, InstrD[11:7], RdE);
// flopenrc #(4) CtrlRegE6(clk, reset, FlushE, ~StallE, FOpCtrlD, FOpCtrlE);
flopenrc #(1) CtrlRegE1(clk, reset, FlushE, ~StallE, FDivStartD, FDivStartE);
flopenrc #(15) CtrlRegE2(clk, reset, FlushE, ~StallE, {InstrD[19:15], InstrD[24:20], InstrD[31:27]},
{Adr1E, Adr2E, Adr3E});
// flopenrc #(1) CtrlRegE8(clk, reset, FlushE, ~StallE, FWriteIntD, FWriteIntE);
// flopenrc #(1) CtrlRegE9(clk, reset, FlushE, ~StallE, FOutputInput2D, FOutputInput2E);
// flopenrc #(2) CtrlRegE10(clk, reset, FlushE, ~StallE, FMemRWD, FMemRWE);
// flopenrc #(1) CtrlRegE11(clk, reset, FlushE, ~StallE, InstrD[15], SelLoadInputE);
flopenrc #(20) CtrlRegE(clk, reset, FlushE, ~StallE,
{FWriteEnD, FResultSelD, FrmD, FmtD, InstrD[11:7], FOpCtrlD, FWriteIntD, InstrD[15], IsFPD},
{FWriteEnE, FResultSelE, FrmE, FmtE, RdE, FOpCtrlE, FWriteIntE, SelLoadInputE, IsFPE});
{Adr1E, Adr2E, Adr3E});
flopenrc #(22) DECtrlReg(clk, reset, FlushE, ~StallE,
{FWriteEnD, FResultSelD, FResSelD, FIntResSelD, FrmD, FmtD, InstrD[11:7], FOpCtrlD, FWriteIntD},
{FWriteEnE, FResultSelE, FResSelE, FIntResSelE, FrmE, FmtE, RdE, FOpCtrlE, FWriteIntE});
//EXECUTION STAGE
// input muxs for forwarding
// single vs double for SRCAM
// mux2 #(64) SrcAMuxForward({SrcAM[31:0], 32'b0}, {SrcAM, {64-`XLEN{1'b0}}}, FmtM, ForwardSrcAM);
// //input 1 forwarding mux
// mux4 #(64) SrcXEmux(FRD1E, FPUResult64W, FPUResult64E, ForwardSrcAM, ForwardXE, SrcXtmpE);
// mux3 #(64) SrcYEmux(FRD2E, FPUResult64W, FPUResult64E, ForwardYE, SrcYE);
// mux2 #(64) SrcZEmux(FRD3E, FPUResult64E, ForwardZE, SrcZE);
// mux2 #(64) FOutputInput2mux(SrcXtmpE, SrcYE, FOutputInput2E, SrcXE);
// Hazard unit for FPU
fpuhazard hazard(.*);
// forwarding muxs
mux3 #(64) fxemux(FRD1E, FPUResult64W, FResM, ForwardXE, SrcXE);
mux3 #(64) fyemux(FRD2E, FPUResult64W, FResM, ForwardYE, SrcYE);
mux3 #(64) fzemux(FRD3E, FPUResult64W, FResM, ForwardZE, SrcZE);
@ -225,6 +206,8 @@ module fpu (
fpdiv fpdivsqrt (.DivOpType(FOpCtrlE[0]), .clk(fpdivClk), .FmtE(~FmtE), .*);
// first of two-stage instance of floating-point add/cvt unit
fpuaddcvt1 fpadd1 (.*);
@ -236,6 +219,8 @@ module fpu (
// first and only instance of floating-point classify unit
fpuclassify fpuclass (.*);
// output for store instructions
assign FWriteDataE = FmtE ? SrcYE[63:64-`XLEN] : {{`XLEN-32{1'b0}}, SrcYE[63:32]};
//*****************
@ -295,17 +280,9 @@ module fpu (
//*****************
// fpcmp E/M pipe registers
//*****************
// flopenrc #(8) EMRegCmp1(clk, reset, FlushM, ~StallM, WE, WM);
// flopenrc #(8) EMRegCmp2(clk, reset, FlushM, ~StallM, XE, XM);
// flopenrc #(1) EMRegcmp3(clk, reset, FlushM, ~StallM, ANaNE, ANaNM);
// flopenrc #(1) EMRegCmp4(clk, reset, FlushM, ~StallM, BNaNE, BNaNM);
// flopenrc #(1) EMRegCmp5(clk, reset, FlushM, ~StallM, AzeroE, AzeroM);
// flopenrc #(1) EMRegCmp6(clk, reset, FlushM, ~StallM, BzeroE, BzeroM);
flopenrc #(1) EMRegCmp1(clk, reset, FlushM, ~StallM, CmpInvalidE, CmpInvalidM);
// flopenrc #(2) EMRegCmp2(clk, reset, FlushM, ~StallM, CmpFCCE, CmpFCCM);
flopenrc #(64) EMRegCmp3(clk, reset, FlushM, ~StallM, FCmpResultE, FCmpResultM);
// put this in for the event we want to delay fsgn - will otherwise bypass
//*****************
// fpsgn E/M pipe registers
//*****************
@ -315,15 +292,9 @@ module fpu (
//*****************
// other E/M pipe registers
//*****************
flopenrc #(1) EMReg1(clk, reset, FlushM, ~StallM, FWriteEnE, FWriteEnM);
flopenrc #(3) EMReg2(clk, reset, FlushM, ~StallM, FResultSelE, FResultSelM);
flopenrc #(3) EMReg3(clk, reset, FlushM, ~StallM, FrmE, FrmM);
flopenrc #(1) EMReg4(clk, reset, FlushM, ~StallM, FmtE, FmtM);
flopenrc #(5) EMReg5(clk, reset, FlushM, ~StallM, RdE, RdM);
flopenrc #(4) EMReg6(clk, reset, FlushM, ~StallM, FOpCtrlE, FOpCtrlM);
flopenrc #(1) EMReg7(clk, reset, FlushM, ~StallM, FWriteIntE, FWriteIntM);
// flopenrc #(2) EMReg8(clk, reset, FlushM, ~StallM, FMemRWE, FMemRWM);
flopenrc #(1) EMReg9(clk, reset, FlushM, ~StallM, SelLoadInputE, SelLoadInputM);
flopenrc #(22) EMCtrlReg(clk, reset, FlushM, ~StallM,
{FWriteEnE, FResultSelE, FResSelE, FIntResSelE, FrmE, FmtE, RdE, FOpCtrlE, FWriteIntE},
{FWriteEnM, FResultSelM, FResSelM, FIntResSelM, FrmM, FmtM, RdM, FOpCtrlM, FWriteIntM});
//*****************
// fpuclassify E/M pipe registers
@ -332,24 +303,18 @@ module fpu (
//BEGIN MEMORY STAGE
mux2 #(64) FResMux(AlignedSrcAM, SgnResultM, FResultSelM == 3'b011, FResM);
assign SrcXMAligned = FmtM ? SrcXM[63:64-`XLEN] : {{`XLEN-32{1'b0}}, SrcXM[63:32]};
mux3 #(`XLEN) IntResMux(SrcXMAligned, FCmpResultM[`XLEN-1:0], ClassResultM[`XLEN-1:0], {FResultSelM == 3'b101, FResultSelM == 3'b001}, FIntResM);
mux3 #(64) FResMux(AlignedSrcAM, SgnResultM, FCmpResultM, FResSelM, FResM);
assign FFlgM = CmpInvalidM & FResSelM[1];
//adjecent adress values are sent to the FPU, select the correct one
// -imm is 80000 most of the time vs the error one which is 00000
// mux3 #(64) FLoadResultMux({HRDATA[31:0], {64-`AHBW+(`XLEN-32){1'b0}}}, {HRDATA[`AHBW-1:`AHBW-32], {64-`AHBW+(`XLEN-32){1'b0}}}, {HRDATA, {64-`AHBW{1'b0}}}, {FmtM, SelLoadInputM}, FLoadResultM);
// mux2 #(64) FLoadStoreResultMux(FLoadResultM, SrcXM, |FOpCtrlM[2:1], FLoadStoreResultM);
assign SrcXMAligned = FmtM ? SrcXM[63:64-`XLEN] : {{`XLEN-32{1'b0}}, SrcXM[63:32]};
mux3 #(`XLEN) IntResMux(FCmpResultM[`XLEN-1:0], SrcXMAligned, ClassResultM[`XLEN-1:0], FIntResSelM, FIntResM);
// second instance of two-stage FMA unit
fma2 fma2(.X(SrcXM), .Y(SrcYM), .Z(SrcZM), .FOpCtrlM(FOpCtrlM[2:0]), .*);
// second instance of two-stage floating-point add/cvt unit
fpuaddcvt2 fpadd2 (.*);
// second instance of two-stage floating-point comparator
// fpucmp2 fpcmp2 (.Invalid(CmpInvalidM), .FCC(CmpFCCM), .ANaN(ANaNM), .BNaN(BNaNM), .Azero(AzeroM),
// .Bzero(BzeroM), .w(WM), .x(XM), .Sel({1'b0, FmtM}), .op1(SrcXM), .op2(SrcYM), .*);
// Align SrcA to MSB when single precicion
mux2 #(64) SrcAMux({SrcAM[31:0], 32'b0}, {{64-`XLEN{1'b0}}, SrcAM}, FmtM, AlignedSrcAM);
@ -397,19 +362,16 @@ module fpu (
//*****************
// other M/W pipe registers
//*****************
flopenrc #(1) MWReg1(clk, reset, FlushW, ~StallW, FWriteEnM, FWriteEnW);
flopenrc #(3) MWReg2(clk, reset, FlushW, ~StallW, FResultSelM, FResultSelW);
flopenrc #(1) MWReg3(clk, reset, FlushW, ~StallW, FmtM, FmtW);
flopenrc #(5) MWReg4(clk, reset, FlushW, ~StallW, RdM, RdW);
flopenrc #(64) MWReg5(clk, reset, FlushW, ~StallW, AlignedSrcAM, SrcAW);
// flopenrc #(64) MWReg6(clk, reset, FlushW, ~StallW, FLoadStoreResultM, FLoadStoreResultW);
flopenrc #(1) MWReg7(clk, reset, FlushW, ~StallW, FWriteIntM, FWriteIntW);
flopenrc #(4) MWReg6(clk, reset, FlushW, ~StallW, FOpCtrlM, FOpCtrlW);
flopenrc #(11) MWCtrlReg(clk, reset, FlushW, ~StallW,
{FWriteEnM, FResultSelM, RdM, FmtM, FWriteIntM},
{FWriteEnW, FResultSelW, RdW, FmtW, FWriteIntW});
//*****************
// fpuclassify M/W pipe registers
//*****************
flopenrc #(64) MWRegClass(clk, reset, FlushW, ~StallW, ClassResultM, ClassResultW);
flopenrc #(64) MWRegClass2(clk, reset, FlushW, ~StallW, FResM, FResW);
flopenrc #(1) MWRegClass1(clk, reset, FlushW, ~StallW, FFlgM, FFlgW);
@ -418,14 +380,6 @@ module fpu (
//#########################################
// BEGIN WRITEBACK STAGE
//#########################################
// mux3 #(64) FLoadResultMux({ReadD[31:0], {64-`AHBW+(`XLEN-32){1'b0}}}, {HRDATA[`AHBW-1:`AHBW-32], {64-`AHBW+(`XLEN-32){1'b0}}}, {HRDATA, {64-`AHBW{1'b0}}}, {FmtM, SelLoadInputM}, FLoadResultM);
// mux2 #(64) FLoadStoreResultMux(FLoadResultM, SrcXM, |FOpCtrlM[2:1], FLoadStoreResultM);
//***RV32D needs to give two bus transactions
mux2 #(64) FLoadResultMux({ReadDataW[31:0], {32{1'b0}}}, {ReadDataW, {64-`XLEN{1'b0}}}, FmtW, FLoadResultW);
mux2 #(64) FLoadStoreResultMux(FLoadResultW, SrcYW, |FOpCtrlW[2:1], FLoadStoreResultW);
@ -434,47 +388,26 @@ module fpu (
always_comb begin
case (FResultSelW)
// div/sqrt
3'b000 : FPUFlagsW = FDivFlagsW;
// cmp
3'b001 : FPUFlagsW = {CmpInvalidW, 4'b0};
//fma/mult
3'b010 : FPUFlagsW = FmaFlagsW;
// sgn inj
3'b011 : FPUFlagsW = SgnFlagsW;
// add/sub/cnvt
3'b100 : FPUFlagsW = FAddFlagsW;
// classify
3'b101 : FPUFlagsW = 5'b0;
// output SrcAW
3'b110 : FPUFlagsW = 5'b0;
// output FRD1
3'b111 : FPUFlagsW = 5'b0;
3'b000 : FPUFlagsW = 5'b0;
3'b001 : FPUFlagsW = FmaFlagsW;
3'b010 : FPUFlagsW = FAddFlagsW;
3'b011 : FPUFlagsW = FDivFlagsW;
3'b100 : FPUFlagsW = {4'b0,FFlgW};
default : FPUFlagsW = 5'bxxxxx;
endcase
end
always_comb begin
case (FResultSelW)
// div/sqrt
3'b000 : FPUResult64W = FDivResultW;
// cmp
3'b001 : FPUResult64W = FCmpResultW;
//fma/mult
3'b010 : FPUResult64W = FmaResultW;
// sgn inj
3'b011 : FPUResult64W = SgnResultW;
// add/sub/cnvt
3'b100 : FPUResult64W = FAddResultW;
// classify
3'b101 : FPUResult64W = ClassResultW;
// output SrcAW
3'b110 : FPUResult64W = SrcAW;
// Load/Store/Move to FP-register
3'b111 : FPUResult64W = FLoadStoreResultW;
default : FPUResult64W = {64{1'bx}};
3'b000 : FPUResult64W = FmtW ? {ReadDataW, {64-`XLEN{1'b0}}} : {ReadDataW[31:0], 32'b0};
3'b001 : FPUResult64W = FmaResultW;
3'b010 : FPUResult64W = FAddResultW;
3'b011 : FPUResult64W = FDivResultW;
3'b100 : FPUResult64W = FResW;
default : FPUResult64W = 64'bxxxxx;
endcase
end // always_comb
end
// interface between XLEN size datapath and double-precision sized
// floating-point results

View File

@ -44,21 +44,21 @@ module fpuhazard(
if ((Adr1E == RdM) & FWriteEnM)
// if the result will be FResM
if(FResultSelM == 3'b110 | FResultSelM == 3'b011) ForwardXE = 2'b10; // choose FResM
if(FResultSelM == 3'b100) ForwardXE = 2'b10; // choose FResM
else FStallD = 1; // if the result won't be ready stall
else if ((Adr1E == RdW) & FWriteEnW) ForwardXE = 2'b01; // choose FPUResult64W
if ((Adr2E == RdM) & FWriteEnM)
// if the result will be FResM
if(FResultSelM == 3'b110 | FResultSelM == 3'b011) ForwardYE = 2'b10; // choose FResM
if(FResultSelM == 3'b100) ForwardYE = 2'b10; // choose FResM
else FStallD = 1; // if the result won't be ready stall
else if ((Adr2E == RdW) & FWriteEnW) ForwardYE = 2'b01; // choose FPUResult64W
if ((Adr3E == RdM) & FWriteEnM)
// if the result will be FResM
if(FResultSelM == 3'b110 | FResultSelM == 3'b011) ForwardZE = 2'b10; // choose FResM
if(FResultSelM == 3'b100) ForwardZE = 2'b10; // choose FResM
else FStallD = 1; // if the result won't be ready stall
else if ((Adr3E == RdW) & FWriteEnW) ForwardZE = 2'b01; // choose FPUResult64W

View File

@ -37,7 +37,7 @@ module datapath (
input logic ALUSrcAE, ALUSrcBE,
input logic TargetSrcE,
input logic JumpE,
input logic IsFPE,
input logic IllegalFPUInstrE,
input logic [1:0] MemRWE,
input logic [`XLEN-1:0] FWriteDataE,
input logic [`XLEN-1:0] PCE,
@ -105,9 +105,9 @@ module datapath (
flopenrc #(5) Rs2EReg(clk, reset, FlushE, ~StallE, Rs2D, Rs2E);
flopenrc #(5) RdEReg(clk, reset, FlushE, ~StallE, RdD, RdE);
mux3 #(`XLEN) faemux(RD1E, WriteDataW, ALUResultM, ForwardAE, PreSrcAE);
mux3 #(`XLEN) fbemux(RD2E, WriteDataW, ALUResultM, ForwardBE, PreSrcBE);
mux2 #(`XLEN) writedatamux(PreSrcBE, FWriteDataE, IsFPE, WriteDataE);
mux3 #(`XLEN) faemux(RD1E, WriteDataW, ResultM, ForwardAE, PreSrcAE);
mux3 #(`XLEN) fbemux(RD2E, WriteDataW, ResultM, ForwardBE, PreSrcBE);
mux2 #(`XLEN) writedatamux(PreSrcBE, FWriteDataE, ~IllegalFPUInstrE, WriteDataE);
mux2 #(`XLEN) srcamux(PreSrcAE, PCE, ALUSrcAE, SrcAE);
mux2 #(`XLEN) srcamux2(SrcAE, PCLinkE, JumpE, SrcAE2);
mux2 #(`XLEN) srcbmux(PreSrcBE, ExtImmE, ALUSrcBE, SrcBE);

View File

@ -36,8 +36,7 @@ module ieu (
input logic [`XLEN-1:0] PCE,
input logic [`XLEN-1:0] PCLinkE,
input logic FWriteIntE,
input logic IsFPE,
//input logic [1:0] FMemRWE,
input logic IllegalFPUInstrE,
input logic [`XLEN-1:0] FWriteDataE,
output logic [`XLEN-1:0] PCTargetE,
output logic MulDivE, W64E,

View File

@ -95,18 +95,17 @@ module wallypipelinedhart (
// floating point unit signals
logic [2:0] FRM_REGW;
logic [1:0] FMemRWM, FMemRWE;
logic FStallD;
logic FWriteIntE, FWriteIntM, FWriteIntW;
logic [`XLEN-1:0] FWriteDataE;
logic [`XLEN-1:0] FIntResM;
logic FDivBusyE;
logic IsFPD, IsFPE;
logic IllegalFPUInstrD, IllegalFPUInstrE;
logic FloatRegWriteW;
logic FPUStallD;
logic [4:0] SetFflagsM;
logic [`XLEN-1:0] FPUResultW;
logic [1:0] FMemRWM, FMemRWE;
logic FStallD;
logic FWriteIntE, FWriteIntM, FWriteIntW;
logic [`XLEN-1:0] FWriteDataE;
logic [`XLEN-1:0] FIntResM;
logic FDivBusyE;
logic IllegalFPUInstrD, IllegalFPUInstrE;
logic FloatRegWriteW;
logic FPUStallD;
logic [4:0] SetFflagsM;
logic [`XLEN-1:0] FPUResultW;
// memory management unit signals
logic ITLBWriteF, DTLBWriteM;