mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-03 02:05:21 +00:00
Parameterized FMA. However, some offsets are not parameterized. See PR #793 for list of changes
This commit is contained in:
parent
2dfada0687
commit
175c18da01
@ -128,12 +128,10 @@ localparam FMALEN = 3*NF + 6;
|
|||||||
// because NORMSHIFTSZ becomes limited by convert rather than divider
|
// because NORMSHIFTSZ becomes limited by convert rather than divider
|
||||||
// The two extra bits are necessary because shiftcorrection dropped them for fcvt.
|
// The two extra bits are necessary because shiftcorrection dropped them for fcvt.
|
||||||
// May be possible to remove these two bits by modifying shiftcorrection
|
// May be possible to remove these two bits by modifying shiftcorrection
|
||||||
localparam NORMSHIFTSZ = `max(`max((CVTLEN+NF+1+2), (DIVb + 1 + NF + 1)), (FMALEN + 2));
|
//localparam NORMSHIFTSZ = `max(`max((CVTLEN+NF+1+2), (DIVb + 1 + NF + 1)), (FMALEN + 2));
|
||||||
//localparam NORMSHIFTSZ = `max(`max((CVTLEN+NF+1), (DIVb + 1 + NF + 1)), (FMALEN + 2));
|
localparam NORMSHIFTSZ = `max(`max((CVTLEN+NF+1), (DIVb + 1 + NF + 1)), (FMALEN + 2));
|
||||||
|
|
||||||
localparam LOGNORMSHIFTSZ = ($clog2(NORMSHIFTSZ)); // log_2(NORMSHIFTSZ)
|
localparam LOGNORMSHIFTSZ = ($clog2(NORMSHIFTSZ)); // log_2(NORMSHIFTSZ)
|
||||||
localparam CORRSHIFTSZ = NORMSHIFTSZ-2; // Drop leading 2 integer bits
|
|
||||||
|
|
||||||
|
|
||||||
// Disable spurious Verilator warnings
|
// Disable spurious Verilator warnings
|
||||||
|
|
||||||
|
@ -196,7 +196,6 @@ localparam cvw_t P = '{
|
|||||||
FMALEN : FMALEN,
|
FMALEN : FMALEN,
|
||||||
NORMSHIFTSZ : NORMSHIFTSZ,
|
NORMSHIFTSZ : NORMSHIFTSZ,
|
||||||
LOGNORMSHIFTSZ : LOGNORMSHIFTSZ,
|
LOGNORMSHIFTSZ : LOGNORMSHIFTSZ,
|
||||||
CORRSHIFTSZ : CORRSHIFTSZ,
|
|
||||||
LOGR : LOGR,
|
LOGR : LOGR,
|
||||||
RK : RK,
|
RK : RK,
|
||||||
FPDUR : FPDUR,
|
FPDUR : FPDUR,
|
||||||
|
@ -288,7 +288,6 @@ typedef struct packed {
|
|||||||
int NORMSHIFTSZ;
|
int NORMSHIFTSZ;
|
||||||
int LOGNORMSHIFTSZ;
|
int LOGNORMSHIFTSZ;
|
||||||
int FMALEN;
|
int FMALEN;
|
||||||
int CORRSHIFTSZ;
|
|
||||||
|
|
||||||
// division constants
|
// division constants
|
||||||
int LOGR ;
|
int LOGR ;
|
||||||
|
@ -31,14 +31,14 @@ module fmaalign import cvw::*; #(parameter cvw_t P) (
|
|||||||
input logic [P.NE-1:0] Xe, Ye, Ze, // biased exponents in B(NE.0) format
|
input logic [P.NE-1:0] Xe, Ye, Ze, // biased exponents in B(NE.0) format
|
||||||
input logic [P.NF:0] Zm, // significand in U(0.NF) format]
|
input logic [P.NF:0] Zm, // significand in U(0.NF) format]
|
||||||
input logic XZero, YZero, ZZero, // is the input zero
|
input logic XZero, YZero, ZZero, // is the input zero
|
||||||
output logic [3*P.NF+5:0] Am, // addend aligned for addition in U(NF+5.2NF+1)
|
output logic [P.FMALEN-1:0] Am, // addend aligned for addition in U(NF+5.2NF+1)
|
||||||
output logic ASticky, // Sticky bit calculated from the aliged addend
|
output logic ASticky, // Sticky bit calculated from the aliged addend
|
||||||
output logic KillProd // should the product be set to zero
|
output logic KillProd // should the product be set to zero
|
||||||
);
|
);
|
||||||
|
|
||||||
logic [P.NE+1:0] ACnt; // how far to shift the addend to align with the product in Q(NE+2.0) format
|
logic [P.NE+1:0] ACnt; // how far to shift the addend to align with the product in Q(NE+2.0) format
|
||||||
logic [4*P.NF+5:0] ZmShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
|
logic [P.FMALEN+P.NF-1:0] ZmShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
|
||||||
logic [4*P.NF+5:0] ZmPreshifted; // input to the alignment shifter U(NF+5.3NF+1)
|
logic [P.FMALEN+P.NF-1:0] ZmPreshifted; // input to the alignment shifter U(NF+5.3NF+1)
|
||||||
logic KillZ; // should the addend be killed
|
logic KillZ; // should the addend be killed
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
@ -56,7 +56,7 @@ module fmaalign import cvw::*; #(parameter cvw_t P) (
|
|||||||
// | 54'b0 | 106'b(product) | 2'b0 |
|
// | 54'b0 | 106'b(product) | 2'b0 |
|
||||||
// | addnend |
|
// | addnend |
|
||||||
|
|
||||||
assign ZmPreshifted = {Zm,(3*P.NF+5)'(0)};
|
assign ZmPreshifted = {Zm,(P.FMALEN-1)'(0)};
|
||||||
assign KillProd = (ACnt[P.NE+1]&~ZZero)|XZero|YZero;
|
assign KillProd = (ACnt[P.NE+1]&~ZZero)|XZero|YZero;
|
||||||
assign KillZ = $signed(ACnt)>$signed((P.NE+2)'(3)*(P.NE+2)'(P.NF)+(P.NE+2)'(5));
|
assign KillZ = $signed(ACnt)>$signed((P.NE+2)'(3)*(P.NE+2)'(P.NF)+(P.NE+2)'(5));
|
||||||
|
|
||||||
@ -87,6 +87,6 @@ module fmaalign import cvw::*; #(parameter cvw_t P) (
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
assign Am = ZmShifted[4*P.NF+5:P.NF];
|
assign Am = ZmShifted[P.FMALEN+P.NF-1:P.NF];
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
@ -119,14 +119,14 @@ module fpu import cvw::*; #(parameter cvw_t P) (
|
|||||||
// Fma Signals
|
// Fma Signals
|
||||||
logic FmaAddSubE; // Multiply by 1.0 when adding or subtracting
|
logic FmaAddSubE; // Multiply by 1.0 when adding or subtracting
|
||||||
logic [1:0] FmaZSelE; // Select Z = Y when adding or subtracting, 0 when multiplying
|
logic [1:0] FmaZSelE; // Select Z = Y when adding or subtracting, 0 when multiplying
|
||||||
logic [3*P.NF+5:0] SmE, SmM; // Sum significand
|
logic [P.FMALEN-1:0] SmE, SmM; // Sum significand
|
||||||
logic FmaAStickyE, FmaAStickyM; // FMA addend sticky bit output
|
logic FmaAStickyE, FmaAStickyM; // FMA addend sticky bit output
|
||||||
logic [P.NE+1:0] SeE,SeM; // Sum exponent
|
logic [P.NE+1:0] SeE,SeM; // Sum exponent
|
||||||
logic InvAE, InvAM; // Invert addend
|
logic InvAE, InvAM; // Invert addend
|
||||||
logic AsE, AsM; // Addend sign
|
logic AsE, AsM; // Addend sign
|
||||||
logic PsE, PsM; // Product sign
|
logic PsE, PsM; // Product sign
|
||||||
logic SsE, SsM; // Sum sign
|
logic SsE, SsM; // Sum sign
|
||||||
logic [$clog2(3*P.NF+7)-1:0] SCntE, SCntM; // LZA sum leading zero count
|
logic [$clog2(P.FMALEN+1)-1:0] SCntE, SCntM; // LZA sum leading zero count
|
||||||
|
|
||||||
// Cvt Signals
|
// Cvt Signals
|
||||||
logic [P.NE:0] CeE, CeM; // convert intermediate expoent
|
logic [P.NE:0] CeE, CeM; // convert intermediate expoent
|
||||||
@ -358,8 +358,8 @@ module fpu import cvw::*; #(parameter cvw_t P) (
|
|||||||
{XsE, YsE, XZeroE, YZeroE, XInfE, YInfE, ZInfE, XNaNE, YNaNE, ZNaNE, XSNaNE, YSNaNE, ZSNaNE},
|
{XsE, YsE, XZeroE, YZeroE, XInfE, YInfE, ZInfE, XNaNE, YNaNE, ZNaNE, XSNaNE, YSNaNE, ZSNaNE},
|
||||||
{XsM, YsM, XZeroM, YZeroM, XInfM, YInfM, ZInfM, XNaNM, YNaNM, ZNaNM, XSNaNM, YSNaNM, ZSNaNM});
|
{XsM, YsM, XZeroM, YZeroM, XInfM, YInfM, ZInfM, XNaNM, YNaNM, ZNaNM, XSNaNM, YSNaNM, ZSNaNM});
|
||||||
flopenrc #(2) EMRegCmpFlg (clk, reset, FlushM, ~StallM, {PreNVE, PreNXE}, {PreNVM, PreNXM});
|
flopenrc #(2) EMRegCmpFlg (clk, reset, FlushM, ~StallM, {PreNVE, PreNXE}, {PreNVM, PreNXM});
|
||||||
flopenrc #(3*P.NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SmE, SmM);
|
flopenrc #(P.FMALEN) EMRegFma2(clk, reset, FlushM, ~StallM, SmE, SmM);
|
||||||
flopenrc #($clog2(3*P.NF+7)+7+P.NE) EMRegFma4(clk, reset, FlushM, ~StallM,
|
flopenrc #($clog2(P.FMALEN+1)+7+P.NE) EMRegFma4(clk, reset, FlushM, ~StallM,
|
||||||
{FmaAStickyE, InvAE, SCntE, AsE, PsE, SsE, SeE},
|
{FmaAStickyE, InvAE, SCntE, AsE, PsE, SsE, SeE},
|
||||||
{FmaAStickyM, InvAM, SCntM, AsM, PsM, SsM, SeM});
|
{FmaAStickyM, InvAM, SCntM, AsM, PsM, SsM, SeM});
|
||||||
flopenrc #(P.NE+P.LOGCVTLEN+P.CVTLEN+4) EMRegCvt(clk, reset, FlushM, ~StallM,
|
flopenrc #(P.NE+P.LOGCVTLEN+P.CVTLEN+4) EMRegCvt(clk, reset, FlushM, ~StallM,
|
||||||
|
@ -30,13 +30,13 @@
|
|||||||
module fmashiftcalc import cvw::*; #(parameter cvw_t P) (
|
module fmashiftcalc import cvw::*; #(parameter cvw_t P) (
|
||||||
input logic [P.FMTBITS-1:0] Fmt, // precision 1 = double 0 = single
|
input logic [P.FMTBITS-1:0] Fmt, // precision 1 = double 0 = single
|
||||||
input logic [P.NE+1:0] FmaSe, // sum's exponent
|
input logic [P.NE+1:0] FmaSe, // sum's exponent
|
||||||
input logic [3*P.NF+5:0] FmaSm, // the positive sum
|
input logic [P.FMALEN-1:0] FmaSm, // the positive sum
|
||||||
input logic [$clog2(3*P.NF+7)-1:0] FmaSCnt, // normalization shift count
|
input logic [$clog2(P.FMALEN+1)-1:0] FmaSCnt, // normalization shift count
|
||||||
output logic [P.NE+1:0] NormSumExp, // exponent of the normalized sum not taking into account Subnormal or zero results
|
output logic [P.NE+1:0] NormSumExp, // exponent of the normalized sum not taking into account Subnormal or zero results
|
||||||
output logic FmaSZero, // is the result subnormal - calculated before LZA corection
|
output logic FmaSZero, // is the sum zero
|
||||||
output logic FmaPreResultSubnorm, // is the result subnormal - calculated before LZA corection
|
output logic FmaPreResultSubnorm, // is the result subnormal - calculated before LZA corection
|
||||||
output logic [$clog2(3*P.NF+7)-1:0] FmaShiftAmt, // normalization shift count
|
output logic [$clog2(P.FMALEN+1)-1:0] FmaShiftAmt, // normalization shift count
|
||||||
output logic [3*P.NF+7:0] FmaShiftIn // is the sum zero
|
output logic [P.FMALEN+1:0] FmaShiftIn
|
||||||
);
|
);
|
||||||
logic [P.NE+1:0] PreNormSumExp; // the exponent of the normalized sum with the P.FLEN bias
|
logic [P.NE+1:0] PreNormSumExp; // the exponent of the normalized sum with the P.FLEN bias
|
||||||
logic [P.NE+1:0] BiasCorr; // correction for bias
|
logic [P.NE+1:0] BiasCorr; // correction for bias
|
||||||
@ -49,7 +49,7 @@ module fmashiftcalc import cvw::*; #(parameter cvw_t P) (
|
|||||||
assign FmaSZero = ~(|FmaSm);
|
assign FmaSZero = ~(|FmaSm);
|
||||||
|
|
||||||
// calculate the sum's exponent FmaSe-FmaSCnt+NF+2
|
// calculate the sum's exponent FmaSe-FmaSCnt+NF+2
|
||||||
assign PreNormSumExp = FmaSe + {{P.NE+2-$unsigned($clog2(3*P.NF+7)){1'b1}}, ~FmaSCnt} + (P.NE+2)'(P.NF+4);
|
assign PreNormSumExp = FmaSe + {{P.NE+2-$unsigned($clog2(P.FMALEN+1)){1'b1}}, ~FmaSCnt} + (P.NE+2)'(P.NF+4);
|
||||||
|
|
||||||
//convert the sum's exponent into the proper precision
|
//convert the sum's exponent into the proper precision
|
||||||
if (P.FPSIZES == 1) begin
|
if (P.FPSIZES == 1) begin
|
||||||
@ -131,6 +131,6 @@ module fmashiftcalc import cvw::*; #(parameter cvw_t P) (
|
|||||||
// set and calculate the shift input and amount
|
// set and calculate the shift input and amount
|
||||||
// - shift once if killing a product and the result is subnormal
|
// - shift once if killing a product and the result is subnormal
|
||||||
assign FmaShiftIn = {2'b0, FmaSm};
|
assign FmaShiftIn = {2'b0, FmaSm};
|
||||||
if (P.FPSIZES == 1) assign FmaShiftAmt = FmaPreResultSubnorm ? FmaSe[$clog2(3*P.NF+5)-1:0]+($clog2(3*P.NF+5))'(P.NF+3): FmaSCnt+1;
|
if (P.FPSIZES == 1) assign FmaShiftAmt = FmaPreResultSubnorm ? FmaSe[$clog2(P.FMALEN-1)-1:0]+($clog2(P.FMALEN-1))'(P.NF+3): FmaSCnt+1;
|
||||||
else assign FmaShiftAmt = FmaPreResultSubnorm ? FmaSe[$clog2(3*P.NF+5)-1:0]+($clog2(3*P.NF+5))'(P.NF+3)+BiasCorr[$clog2(3*P.NF+5)-1:0]: FmaSCnt+1;
|
else assign FmaShiftAmt = FmaPreResultSubnorm ? FmaSe[$clog2(P.FMALEN-1)-1:0]+($clog2(P.FMALEN-1))'(P.NF+3)+BiasCorr[$clog2(P.FMALEN-1)-1:0]: FmaSCnt+1;
|
||||||
endmodule
|
endmodule
|
||||||
|
@ -44,9 +44,9 @@ module postprocess import cvw::*; #(parameter cvw_t P) (
|
|||||||
input logic FmaPs, // the product's sign
|
input logic FmaPs, // the product's sign
|
||||||
input logic FmaSs, // Sum sign
|
input logic FmaSs, // Sum sign
|
||||||
input logic [P.NE+1:0] FmaSe, // the sum's exponent
|
input logic [P.NE+1:0] FmaSe, // the sum's exponent
|
||||||
input logic [3*P.NF+5:0] FmaSm, // the positive sum
|
input logic [P.FMALEN-1:0] FmaSm, // the positive sum
|
||||||
input logic FmaASticky, // sticky bit that is calculated during alignment
|
input logic FmaASticky, // sticky bit that is calculated during alignment
|
||||||
input logic [$clog2(3*P.NF+7)-1:0] FmaSCnt, // the normalization shift count
|
input logic [$clog2(P.FMALEN+1)-1:0] FmaSCnt, // the normalization shift count
|
||||||
//divide signals
|
//divide signals
|
||||||
input logic DivSticky, // divider sticky bit
|
input logic DivSticky, // divider sticky bit
|
||||||
input logic [P.NE+1:0] DivUe, // divsqrt exponent
|
input logic [P.NE+1:0] DivUe, // divsqrt exponent
|
||||||
@ -70,8 +70,8 @@ module postprocess import cvw::*; #(parameter cvw_t P) (
|
|||||||
logic Rs; // result sign
|
logic Rs; // result sign
|
||||||
logic [P.NF-1:0] Rf; // Result fraction
|
logic [P.NF-1:0] Rf; // Result fraction
|
||||||
logic [P.NE-1:0] Re; // Result exponent
|
logic [P.NE-1:0] Re; // Result exponent
|
||||||
logic Ms; // norMalized sign
|
logic Ms; // normalized sign
|
||||||
logic [P.CORRSHIFTSZ-1:0] Mf; // norMalized fraction
|
logic [P.NORMSHIFTSZ-1:0] Mf; // normalized fraction
|
||||||
logic [P.NE+1:0] Me; // normalized exponent
|
logic [P.NE+1:0] Me; // normalized exponent
|
||||||
logic [P.NE+1:0] FullRe; // Re with bits to determine sign and overflow
|
logic [P.NE+1:0] FullRe; // Re with bits to determine sign and overflow
|
||||||
logic UfPlus1; // do you add one (for determining underflow flag)
|
logic UfPlus1; // do you add one (for determining underflow flag)
|
||||||
@ -86,10 +86,10 @@ module postprocess import cvw::*; #(parameter cvw_t P) (
|
|||||||
// fma signals
|
// fma signals
|
||||||
logic [P.NE+1:0] FmaMe; // exponent of the normalized sum
|
logic [P.NE+1:0] FmaMe; // exponent of the normalized sum
|
||||||
logic FmaSZero; // is the sum zero
|
logic FmaSZero; // is the sum zero
|
||||||
logic [3*P.NF+7:0] FmaShiftIn; // fma shift input
|
logic [P.FMALEN+1:0] FmaShiftIn; // fma shift input
|
||||||
logic [P.NE+1:0] NormSumExp; // exponent of the normalized sum not taking into account Subnormal or zero results
|
logic [P.NE+1:0] NormSumExp; // exponent of the normalized sum not taking into account Subnormal or zero results
|
||||||
logic FmaPreResultSubnorm; // is the result subnormal - calculated before LZA corection
|
logic FmaPreResultSubnorm; // is the result subnormal - calculated before LZA corection
|
||||||
logic [$clog2(3*P.NF+5)-1:0] FmaShiftAmt; // normalization shift amount for fma
|
logic [$clog2(P.FMALEN+1)-1:0] FmaShiftAmt; // normalization shift amount for fma
|
||||||
// division signals
|
// division signals
|
||||||
logic [P.LOGNORMSHIFTSZ-1:0] DivShiftAmt; // divsqrt shif amount
|
logic [P.LOGNORMSHIFTSZ-1:0] DivShiftAmt; // divsqrt shif amount
|
||||||
logic [P.NORMSHIFTSZ-1:0] DivShiftIn; // divsqrt shift input
|
logic [P.NORMSHIFTSZ-1:0] DivShiftIn; // divsqrt shift input
|
||||||
@ -154,8 +154,8 @@ module postprocess import cvw::*; #(parameter cvw_t P) (
|
|||||||
always_comb
|
always_comb
|
||||||
case(PostProcSel)
|
case(PostProcSel)
|
||||||
2'b10: begin // fma
|
2'b10: begin // fma
|
||||||
ShiftAmt = {{P.LOGNORMSHIFTSZ-$clog2(3*P.NF+5){1'b0}}, FmaShiftAmt};
|
ShiftAmt = {{P.LOGNORMSHIFTSZ-$clog2(P.FMALEN-1){1'b0}}, FmaShiftAmt};
|
||||||
ShiftIn = {FmaShiftIn, {P.NORMSHIFTSZ-(3*P.NF+8){1'b0}}};
|
ShiftIn = {FmaShiftIn, {P.NORMSHIFTSZ-(P.FMALEN+2){1'b0}}};
|
||||||
end
|
end
|
||||||
2'b00: begin // cvt
|
2'b00: begin // cvt
|
||||||
ShiftAmt = {{P.LOGNORMSHIFTSZ-$clog2(P.CVTLEN+1){1'b0}}, CvtShiftAmt};
|
ShiftAmt = {{P.LOGNORMSHIFTSZ-$clog2(P.CVTLEN+1){1'b0}}, CvtShiftAmt};
|
||||||
|
@ -32,7 +32,7 @@ module round import cvw::*; #(parameter cvw_t P) (
|
|||||||
input logic [2:0] Frm, // rounding mode
|
input logic [2:0] Frm, // rounding mode
|
||||||
input logic [1:0] PostProcSel, // select the postprocessor output
|
input logic [1:0] PostProcSel, // select the postprocessor output
|
||||||
input logic Ms, // normalized sign
|
input logic Ms, // normalized sign
|
||||||
input logic [P.CORRSHIFTSZ-1:0] Mf, // normalized fraction
|
input logic [P.NORMSHIFTSZ-1:0] Mf, // normalized fraction
|
||||||
// fma
|
// fma
|
||||||
input logic FmaOp, // is an fma operation being done?
|
input logic FmaOp, // is an fma operation being done?
|
||||||
input logic [P.NE+1:0] FmaMe, // exponent of the normalized sum for fma
|
input logic [P.NE+1:0] FmaMe, // exponent of the normalized sum for fma
|
||||||
@ -123,61 +123,61 @@ module round import cvw::*; #(parameter cvw_t P) (
|
|||||||
// | NF |1|1|
|
// | NF |1|1|
|
||||||
// ^ ^ if floating point result
|
// ^ ^ if floating point result
|
||||||
// ^ if not an FMA result
|
// ^ if not an FMA result
|
||||||
if (XLENPOS == 1)assign NormSticky = (|Mf[P.CORRSHIFTSZ-P.NF-2:P.CORRSHIFTSZ-P.XLEN-1]&FpRes) |
|
if (XLENPOS == 1)assign NormSticky = (|Mf[P.NORMSHIFTSZ-P.NF-2:P.NORMSHIFTSZ-P.XLEN-1]&FpRes) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.XLEN-2:0]);
|
(|Mf[P.NORMSHIFTSZ-P.XLEN-2:0]);
|
||||||
// 2: NF > XLEN
|
// 2: NF > XLEN
|
||||||
if (XLENPOS == 2)assign NormSticky = (|Mf[P.CORRSHIFTSZ-P.XLEN-2:P.CORRSHIFTSZ-P.NF-1]&IntRes) |
|
if (XLENPOS == 2)assign NormSticky = (|Mf[P.NORMSHIFTSZ-P.XLEN-2:P.NORMSHIFTSZ-P.NF-1]&IntRes) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF-2:0]);
|
(|Mf[P.NORMSHIFTSZ-P.NF-2:0]);
|
||||||
|
|
||||||
end else if (P.FPSIZES == 2) begin
|
end else if (P.FPSIZES == 2) begin
|
||||||
// XLEN is either 64 or 32
|
// XLEN is either 64 or 32
|
||||||
// so half and single are always smaller then XLEN
|
// so half and single are always smaller then XLEN
|
||||||
|
|
||||||
// 1: XLEN > NF > NF1
|
// 1: XLEN > NF > NF1
|
||||||
if (XLENPOS == 1) assign NormSticky = (|Mf[P.CORRSHIFTSZ-P.NF1-2:P.CORRSHIFTSZ-P.NF-1]&FpRes&~OutFmt) |
|
if (XLENPOS == 1) assign NormSticky = (|Mf[P.NORMSHIFTSZ-P.NF1-2:P.NORMSHIFTSZ-P.NF-1]&FpRes&~OutFmt) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF-2:P.CORRSHIFTSZ-P.XLEN-1]&FpRes) |
|
(|Mf[P.NORMSHIFTSZ-P.NF-2:P.NORMSHIFTSZ-P.XLEN-1]&FpRes) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.XLEN-2:0]);
|
(|Mf[P.NORMSHIFTSZ-P.XLEN-2:0]);
|
||||||
// 2: NF > XLEN > NF1
|
// 2: NF > XLEN > NF1
|
||||||
if (XLENPOS == 2) assign NormSticky = (|Mf[P.CORRSHIFTSZ-P.NF1-2:P.CORRSHIFTSZ-P.XLEN-1]&FpRes&~OutFmt) |
|
if (XLENPOS == 2) assign NormSticky = (|Mf[P.NORMSHIFTSZ-P.NF1-2:P.NORMSHIFTSZ-P.XLEN-1]&FpRes&~OutFmt) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.XLEN-2:P.CORRSHIFTSZ-P.NF-1]&(IntRes|~OutFmt)) |
|
(|Mf[P.NORMSHIFTSZ-P.XLEN-2:P.NORMSHIFTSZ-P.NF-1]&(IntRes|~OutFmt)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF-2:0]);
|
(|Mf[P.NORMSHIFTSZ-P.NF-2:0]);
|
||||||
// 3: NF > NF1 > XLEN
|
// 3: NF > NF1 > XLEN
|
||||||
if (XLENPOS == 3) assign NormSticky = (|Mf[P.CORRSHIFTSZ-P.XLEN-2:P.CORRSHIFTSZ-P.NF1-1]&IntRes) |
|
if (XLENPOS == 3) assign NormSticky = (|Mf[P.NORMSHIFTSZ-P.XLEN-2:P.NORMSHIFTSZ-P.NF1-1]&IntRes) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF1-2:P.CORRSHIFTSZ-P.NF-1]&(~OutFmt|IntRes)) |
|
(|Mf[P.NORMSHIFTSZ-P.NF1-2:P.NORMSHIFTSZ-P.NF-1]&(~OutFmt|IntRes)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF-2:0]);
|
(|Mf[P.NORMSHIFTSZ-P.NF-2:0]);
|
||||||
|
|
||||||
end else if (P.FPSIZES == 3) begin
|
end else if (P.FPSIZES == 3) begin
|
||||||
// 1: XLEN > NF > NF1
|
// 1: XLEN > NF > NF1
|
||||||
if (XLENPOS == 1) assign NormSticky = (|Mf[P.CORRSHIFTSZ-P.NF2-2:P.CORRSHIFTSZ-P.NF1-1]&FpRes&(OutFmt==P.FMT2)) |
|
if (XLENPOS == 1) assign NormSticky = (|Mf[P.NORMSHIFTSZ-P.NF2-2:P.NORMSHIFTSZ-P.NF1-1]&FpRes&(OutFmt==P.FMT2)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF1-2:P.CORRSHIFTSZ-P.NF-1]&FpRes&~(OutFmt==P.FMT)) |
|
(|Mf[P.NORMSHIFTSZ-P.NF1-2:P.NORMSHIFTSZ-P.NF-1]&FpRes&~(OutFmt==P.FMT)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF-2:P.CORRSHIFTSZ-P.XLEN-1]&FpRes) |
|
(|Mf[P.NORMSHIFTSZ-P.NF-2:P.NORMSHIFTSZ-P.XLEN-1]&FpRes) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.XLEN-2:0]);
|
(|Mf[P.NORMSHIFTSZ-P.XLEN-2:0]);
|
||||||
// 2: NF > XLEN > NF1
|
// 2: NF > XLEN > NF1
|
||||||
if (XLENPOS == 2) assign NormSticky = (|Mf[P.CORRSHIFTSZ-P.NF2-2:P.CORRSHIFTSZ-P.NF1-1]&FpRes&(OutFmt==P.FMT2)) |
|
if (XLENPOS == 2) assign NormSticky = (|Mf[P.NORMSHIFTSZ-P.NF2-2:P.NORMSHIFTSZ-P.NF1-1]&FpRes&(OutFmt==P.FMT2)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF1-2:P.CORRSHIFTSZ-P.XLEN-1]&FpRes&~(OutFmt==P.FMT)) |
|
(|Mf[P.NORMSHIFTSZ-P.NF1-2:P.NORMSHIFTSZ-P.XLEN-1]&FpRes&~(OutFmt==P.FMT)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.XLEN-2:P.CORRSHIFTSZ-P.NF-1]&(IntRes|~(OutFmt==P.FMT))) |
|
(|Mf[P.NORMSHIFTSZ-P.XLEN-2:P.NORMSHIFTSZ-P.NF-1]&(IntRes|~(OutFmt==P.FMT))) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF-2:0]);
|
(|Mf[P.NORMSHIFTSZ-P.NF-2:0]);
|
||||||
// 3: NF > NF1 > XLEN
|
// 3: NF > NF1 > XLEN
|
||||||
if (XLENPOS == 3) assign NormSticky = (|Mf[P.CORRSHIFTSZ-P.NF2-2:P.CORRSHIFTSZ-P.XLEN-1]&FpRes&(OutFmt==P.FMT2)) |
|
if (XLENPOS == 3) assign NormSticky = (|Mf[P.NORMSHIFTSZ-P.NF2-2:P.NORMSHIFTSZ-P.XLEN-1]&FpRes&(OutFmt==P.FMT2)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.XLEN-2:P.CORRSHIFTSZ-P.NF1-1]&((OutFmt==P.FMT2)|IntRes)) |
|
(|Mf[P.NORMSHIFTSZ-P.XLEN-2:P.NORMSHIFTSZ-P.NF1-1]&((OutFmt==P.FMT2)|IntRes)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF1-2:P.CORRSHIFTSZ-P.NF-1]&(~(OutFmt==P.FMT)|IntRes)) |
|
(|Mf[P.NORMSHIFTSZ-P.NF1-2:P.NORMSHIFTSZ-P.NF-1]&(~(OutFmt==P.FMT)|IntRes)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.NF-2:0]);
|
(|Mf[P.NORMSHIFTSZ-P.NF-2:0]);
|
||||||
|
|
||||||
end else if (P.FPSIZES == 4) begin
|
end else if (P.FPSIZES == 4) begin
|
||||||
// Quad precision will always be greater than XLEN
|
// Quad precision will always be greater than XLEN
|
||||||
// 2: NF > XLEN > NF1
|
// 2: NF > XLEN > NF1
|
||||||
if (XLENPOS == 2) assign NormSticky = (|Mf[P.CORRSHIFTSZ-P.H_NF-2:P.CORRSHIFTSZ-P.S_NF-1]&FpRes&(OutFmt==P.H_FMT)) |
|
if (XLENPOS == 2) assign NormSticky = (|Mf[P.NORMSHIFTSZ-P.H_NF-2:P.NORMSHIFTSZ-P.S_NF-1]&FpRes&(OutFmt==P.H_FMT)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.S_NF-2:P.CORRSHIFTSZ-P.D_NF-1]&FpRes&((OutFmt==P.S_FMT)|(OutFmt==P.H_FMT))) |
|
(|Mf[P.NORMSHIFTSZ-P.S_NF-2:P.NORMSHIFTSZ-P.D_NF-1]&FpRes&((OutFmt==P.S_FMT)|(OutFmt==P.H_FMT))) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.D_NF-2:P.CORRSHIFTSZ-P.XLEN-1]&FpRes&~(OutFmt==P.Q_FMT)) |
|
(|Mf[P.NORMSHIFTSZ-P.D_NF-2:P.NORMSHIFTSZ-P.XLEN-1]&FpRes&~(OutFmt==P.Q_FMT)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.XLEN-2:P.CORRSHIFTSZ-P.Q_NF-1]&(~(OutFmt==P.Q_FMT)|IntRes)) |
|
(|Mf[P.NORMSHIFTSZ-P.XLEN-2:P.NORMSHIFTSZ-P.Q_NF-1]&(~(OutFmt==P.Q_FMT)|IntRes)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.Q_NF-2:0]);
|
(|Mf[P.NORMSHIFTSZ-P.Q_NF-2:0]);
|
||||||
// 3: NF > NF1 > XLEN
|
// 3: NF > NF1 > XLEN
|
||||||
// The extra XLEN bit will be ored later when caculating the final sticky bit - the ufplus1 not needed for integer
|
// The extra XLEN bit will be ored later when caculating the final sticky bit - the ufplus1 not needed for integer
|
||||||
if (XLENPOS == 3) assign NormSticky = (|Mf[P.CORRSHIFTSZ-P.H_NF-2:P.CORRSHIFTSZ-P.S_NF-1]&FpRes&(OutFmt==P.H_FMT)) |
|
if (XLENPOS == 3) assign NormSticky = (|Mf[P.NORMSHIFTSZ-P.H_NF-2:P.NORMSHIFTSZ-P.S_NF-1]&FpRes&(OutFmt==P.H_FMT)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.S_NF-2:P.CORRSHIFTSZ-P.XLEN-1]&FpRes&((OutFmt==P.S_FMT)|(OutFmt==P.H_FMT))) |
|
(|Mf[P.NORMSHIFTSZ-P.S_NF-2:P.NORMSHIFTSZ-P.XLEN-1]&FpRes&((OutFmt==P.S_FMT)|(OutFmt==P.H_FMT))) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.XLEN-2:P.CORRSHIFTSZ-P.D_NF-1]&((OutFmt==P.S_FMT)|(OutFmt==P.H_FMT)|IntRes)) |
|
(|Mf[P.NORMSHIFTSZ-P.XLEN-2:P.NORMSHIFTSZ-P.D_NF-1]&((OutFmt==P.S_FMT)|(OutFmt==P.H_FMT)|IntRes)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.D_NF-2:P.CORRSHIFTSZ-P.Q_NF-1]&(~(OutFmt==P.Q_FMT)|IntRes)) |
|
(|Mf[P.NORMSHIFTSZ-P.D_NF-2:P.NORMSHIFTSZ-P.Q_NF-1]&(~(OutFmt==P.Q_FMT)|IntRes)) |
|
||||||
(|Mf[P.CORRSHIFTSZ-P.Q_NF-2:0]);
|
(|Mf[P.NORMSHIFTSZ-P.Q_NF-2:0]);
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -188,32 +188,32 @@ module round import cvw::*; #(parameter cvw_t P) (
|
|||||||
// determine round and LSB of the rounded value
|
// determine round and LSB of the rounded value
|
||||||
// - underflow round bit is used to determint the underflow flag
|
// - underflow round bit is used to determint the underflow flag
|
||||||
if (P.FPSIZES == 1) begin
|
if (P.FPSIZES == 1) begin
|
||||||
assign FpGuard = Mf[P.CORRSHIFTSZ-P.NF-1];
|
assign FpGuard = Mf[P.NORMSHIFTSZ-P.NF-1];
|
||||||
assign FpLsbRes = Mf[P.CORRSHIFTSZ-P.NF];
|
assign FpLsbRes = Mf[P.NORMSHIFTSZ-P.NF];
|
||||||
assign FpRound = Mf[P.CORRSHIFTSZ-P.NF-2];
|
assign FpRound = Mf[P.NORMSHIFTSZ-P.NF-2];
|
||||||
|
|
||||||
end else if (P.FPSIZES == 2) begin
|
end else if (P.FPSIZES == 2) begin
|
||||||
assign FpGuard = OutFmt ? Mf[P.CORRSHIFTSZ-P.NF-1] : Mf[P.CORRSHIFTSZ-P.NF1-1];
|
assign FpGuard = OutFmt ? Mf[P.NORMSHIFTSZ-P.NF-1] : Mf[P.NORMSHIFTSZ-P.NF1-1];
|
||||||
assign FpLsbRes = OutFmt ? Mf[P.CORRSHIFTSZ-P.NF] : Mf[P.CORRSHIFTSZ-P.NF1];
|
assign FpLsbRes = OutFmt ? Mf[P.NORMSHIFTSZ-P.NF] : Mf[P.NORMSHIFTSZ-P.NF1];
|
||||||
assign FpRound = OutFmt ? Mf[P.CORRSHIFTSZ-P.NF-2] : Mf[P.CORRSHIFTSZ-P.NF1-2];
|
assign FpRound = OutFmt ? Mf[P.NORMSHIFTSZ-P.NF-2] : Mf[P.NORMSHIFTSZ-P.NF1-2];
|
||||||
|
|
||||||
end else if (P.FPSIZES == 3) begin
|
end else if (P.FPSIZES == 3) begin
|
||||||
always_comb
|
always_comb
|
||||||
case (OutFmt)
|
case (OutFmt)
|
||||||
P.FMT: begin
|
P.FMT: begin
|
||||||
FpGuard = Mf[P.CORRSHIFTSZ-P.NF-1];
|
FpGuard = Mf[P.NORMSHIFTSZ-P.NF-1];
|
||||||
FpLsbRes = Mf[P.CORRSHIFTSZ-P.NF];
|
FpLsbRes = Mf[P.NORMSHIFTSZ-P.NF];
|
||||||
FpRound = Mf[P.CORRSHIFTSZ-P.NF-2];
|
FpRound = Mf[P.NORMSHIFTSZ-P.NF-2];
|
||||||
end
|
end
|
||||||
P.FMT1: begin
|
P.FMT1: begin
|
||||||
FpGuard = Mf[P.CORRSHIFTSZ-P.NF1-1];
|
FpGuard = Mf[P.NORMSHIFTSZ-P.NF1-1];
|
||||||
FpLsbRes = Mf[P.CORRSHIFTSZ-P.NF1];
|
FpLsbRes = Mf[P.NORMSHIFTSZ-P.NF1];
|
||||||
FpRound = Mf[P.CORRSHIFTSZ-P.NF1-2];
|
FpRound = Mf[P.NORMSHIFTSZ-P.NF1-2];
|
||||||
end
|
end
|
||||||
P.FMT2: begin
|
P.FMT2: begin
|
||||||
FpGuard = Mf[P.CORRSHIFTSZ-P.NF2-1];
|
FpGuard = Mf[P.NORMSHIFTSZ-P.NF2-1];
|
||||||
FpLsbRes = Mf[P.CORRSHIFTSZ-P.NF2];
|
FpLsbRes = Mf[P.NORMSHIFTSZ-P.NF2];
|
||||||
FpRound = Mf[P.CORRSHIFTSZ-P.NF2-2];
|
FpRound = Mf[P.NORMSHIFTSZ-P.NF2-2];
|
||||||
end
|
end
|
||||||
default: begin
|
default: begin
|
||||||
FpGuard = 1'bx;
|
FpGuard = 1'bx;
|
||||||
@ -225,31 +225,31 @@ module round import cvw::*; #(parameter cvw_t P) (
|
|||||||
always_comb
|
always_comb
|
||||||
case (OutFmt)
|
case (OutFmt)
|
||||||
2'h3: begin
|
2'h3: begin
|
||||||
FpGuard = Mf[P.CORRSHIFTSZ-P.Q_NF-1];
|
FpGuard = Mf[P.NORMSHIFTSZ-P.Q_NF-1];
|
||||||
FpLsbRes = Mf[P.CORRSHIFTSZ-P.Q_NF];
|
FpLsbRes = Mf[P.NORMSHIFTSZ-P.Q_NF];
|
||||||
FpRound = Mf[P.CORRSHIFTSZ-P.Q_NF-2];
|
FpRound = Mf[P.NORMSHIFTSZ-P.Q_NF-2];
|
||||||
end
|
end
|
||||||
2'h1: begin
|
2'h1: begin
|
||||||
FpGuard = Mf[P.CORRSHIFTSZ-P.D_NF-1];
|
FpGuard = Mf[P.NORMSHIFTSZ-P.D_NF-1];
|
||||||
FpLsbRes = Mf[P.CORRSHIFTSZ-P.D_NF];
|
FpLsbRes = Mf[P.NORMSHIFTSZ-P.D_NF];
|
||||||
FpRound = Mf[P.CORRSHIFTSZ-P.D_NF-2];
|
FpRound = Mf[P.NORMSHIFTSZ-P.D_NF-2];
|
||||||
end
|
end
|
||||||
2'h0: begin
|
2'h0: begin
|
||||||
FpGuard = Mf[P.CORRSHIFTSZ-P.S_NF-1];
|
FpGuard = Mf[P.NORMSHIFTSZ-P.S_NF-1];
|
||||||
FpLsbRes = Mf[P.CORRSHIFTSZ-P.S_NF];
|
FpLsbRes = Mf[P.NORMSHIFTSZ-P.S_NF];
|
||||||
FpRound = Mf[P.CORRSHIFTSZ-P.S_NF-2];
|
FpRound = Mf[P.NORMSHIFTSZ-P.S_NF-2];
|
||||||
end
|
end
|
||||||
2'h2: begin
|
2'h2: begin
|
||||||
FpGuard = Mf[P.CORRSHIFTSZ-P.H_NF-1];
|
FpGuard = Mf[P.NORMSHIFTSZ-P.H_NF-1];
|
||||||
FpLsbRes = Mf[P.CORRSHIFTSZ-P.H_NF];
|
FpLsbRes = Mf[P.NORMSHIFTSZ-P.H_NF];
|
||||||
FpRound = Mf[P.CORRSHIFTSZ-P.H_NF-2];
|
FpRound = Mf[P.NORMSHIFTSZ-P.H_NF-2];
|
||||||
end
|
end
|
||||||
endcase
|
endcase
|
||||||
end
|
end
|
||||||
|
|
||||||
assign Guard = CvtToInt ? Mf[P.CORRSHIFTSZ-P.XLEN-1] : FpGuard;
|
assign Guard = CvtToInt ? Mf[P.NORMSHIFTSZ-P.XLEN-1] : FpGuard;
|
||||||
assign LsbRes = CvtToInt ? Mf[P.CORRSHIFTSZ-P.XLEN] : FpLsbRes;
|
assign LsbRes = CvtToInt ? Mf[P.NORMSHIFTSZ-P.XLEN] : FpLsbRes;
|
||||||
assign Round = CvtToInt ? Mf[P.CORRSHIFTSZ-P.XLEN-2] : FpRound;
|
assign Round = CvtToInt ? Mf[P.NORMSHIFTSZ-P.XLEN-2] : FpRound;
|
||||||
|
|
||||||
always_comb begin
|
always_comb begin
|
||||||
// Determine if you add 1
|
// Determine if you add 1
|
||||||
@ -296,7 +296,7 @@ module round import cvw::*; #(parameter cvw_t P) (
|
|||||||
assign RoundAdd = {(P.Q_NE+1+P.H_NF)'(0), FpPlus1&(OutFmt==P.H_FMT), (P.S_NF-P.H_NF-1)'(0), FpPlus1&(OutFmt==P.S_FMT), (P.D_NF-P.S_NF-1)'(0), FpPlus1&(OutFmt==P.D_FMT), (P.Q_NF-P.D_NF-1)'(0), FpPlus1&(OutFmt==P.Q_FMT)};
|
assign RoundAdd = {(P.Q_NE+1+P.H_NF)'(0), FpPlus1&(OutFmt==P.H_FMT), (P.S_NF-P.H_NF-1)'(0), FpPlus1&(OutFmt==P.S_FMT), (P.D_NF-P.S_NF-1)'(0), FpPlus1&(OutFmt==P.D_FMT), (P.Q_NF-P.D_NF-1)'(0), FpPlus1&(OutFmt==P.Q_FMT)};
|
||||||
|
|
||||||
// trim unneeded bits from fraction
|
// trim unneeded bits from fraction
|
||||||
assign RoundFrac = Mf[P.CORRSHIFTSZ-1:P.CORRSHIFTSZ-P.NF];
|
assign RoundFrac = Mf[P.NORMSHIFTSZ-1:P.NORMSHIFTSZ-P.NF];
|
||||||
|
|
||||||
// select the exponent
|
// select the exponent
|
||||||
always_comb
|
always_comb
|
||||||
|
@ -41,11 +41,11 @@ module shiftcorrection import cvw::*; #(parameter cvw_t P) (
|
|||||||
input logic FmaSZero,
|
input logic FmaSZero,
|
||||||
// output
|
// output
|
||||||
output logic [P.NE+1:0] FmaMe, // exponent of the normalized sum
|
output logic [P.NE+1:0] FmaMe, // exponent of the normalized sum
|
||||||
output logic [P.CORRSHIFTSZ-1:0] Mf, // the shifted sum after correction
|
output logic [P.NORMSHIFTSZ-1:0] Mf, // the shifted sum after correction
|
||||||
output logic [P.NE+1:0] Ue // corrected exponent for divider
|
output logic [P.NE+1:0] Ue // corrected exponent for divider
|
||||||
);
|
);
|
||||||
|
|
||||||
logic [P.CORRSHIFTSZ-1:0] CorrShifted; // the shifted sum after LZA correction
|
logic [P.NORMSHIFTSZ-1:0] CorrShifted; // the shifted sum after LZA correction
|
||||||
logic ResSubnorm; // is the result Subnormal
|
logic ResSubnorm; // is the result Subnormal
|
||||||
logic LZAPlus1; // add one or two to the sum's exponent due to LZA correction
|
logic LZAPlus1; // add one or two to the sum's exponent due to LZA correction
|
||||||
logic LeftShiftQm; // should the divsqrt result be shifted one to the left
|
logic LeftShiftQm; // should the divsqrt result be shifted one to the left
|
||||||
@ -69,12 +69,12 @@ module shiftcorrection import cvw::*; #(parameter cvw_t P) (
|
|||||||
assign RightShift = FmaOp ? LZAPlus1 : LeftShiftQm;
|
assign RightShift = FmaOp ? LZAPlus1 : LeftShiftQm;
|
||||||
|
|
||||||
// one bit right shift for FMA or division
|
// one bit right shift for FMA or division
|
||||||
mux2 #(P.NORMSHIFTSZ-2) corrmux(Shifted[P.NORMSHIFTSZ-3:0], Shifted[P.NORMSHIFTSZ-2:1], RightShift, CorrShifted);
|
mux2 #(P.NORMSHIFTSZ) corrmux({Shifted[P.NORMSHIFTSZ-3:0], 2'b00}, {Shifted[P.NORMSHIFTSZ-2:1], 2'b00}, RightShift, CorrShifted);
|
||||||
|
|
||||||
// if the result of the divider was calculated to be subnormal, then the result was correctly normalized, so select the top shifted bits
|
// if the result of the divider was calculated to be subnormal, then the result was correctly normalized, so select the top shifted bits
|
||||||
always_comb
|
always_comb
|
||||||
if (FmaOp | (DivOp & ~DivResSubnorm)) Mf = CorrShifted;
|
if (FmaOp | (DivOp & ~DivResSubnorm)) Mf = CorrShifted;
|
||||||
else Mf = Shifted[P.NORMSHIFTSZ-1:2];
|
else Mf = Shifted[P.NORMSHIFTSZ-1:0];
|
||||||
|
|
||||||
// Determine sum's exponent
|
// Determine sum's exponent
|
||||||
// main exponent issues:
|
// main exponent issues:
|
||||||
|
@ -98,8 +98,8 @@ module testbench_fp;
|
|||||||
logic [P.NE+1:0] Se;
|
logic [P.NE+1:0] Se;
|
||||||
logic ASticky;
|
logic ASticky;
|
||||||
logic KillProd;
|
logic KillProd;
|
||||||
logic [$clog2(3*P.NF+7)-1:0] SCnt;
|
logic [$clog2(P.FMALEN+1)-1:0] SCnt;
|
||||||
logic [3*P.NF+5:0] Sm;
|
logic [P.FMALEN-1:0] Sm;
|
||||||
logic InvA;
|
logic InvA;
|
||||||
logic NegSum;
|
logic NegSum;
|
||||||
logic As;
|
logic As;
|
||||||
|
Loading…
Reference in New Issue
Block a user