cvw/pipelined/src/ieu/comparator.sv

320 lines
11 KiB
Systemverilog
Raw Normal View History

2021-12-08 20:33:53 +00:00
///////////////////////////////////////////
// comparator.sv
//
// Written: David_Harris@hmc.edu 8 December 2021
// Modified:
//
// Purpose: Branch comparison
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
2021-12-08 20:33:53 +00:00
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
2021-12-08 20:33:53 +00:00
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
2021-12-08 20:33:53 +00:00
`include "wally-config.vh"
module donedet #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b,
output logic eq);
//assign eq = (a+b == 0); // gives good speed but 3x necessary area
// See CMOS VLSI Design 4th Ed. p. 463 K = A+B for K = 0
assign eq = ((a ^ b) == {a[WIDTH-2:0], 1'b0} | {b[WIDTH-2:0], 1'b0});
endmodule
2022-05-03 10:54:30 +00:00
module comparator_sub #(parameter WIDTH=64) (
2021-12-08 20:33:53 +00:00
input logic [WIDTH-1:0] a, b,
output logic [2:0] flags);
2022-05-03 10:54:30 +00:00
logic eq, lt, ltu;
2022-04-17 21:53:11 +00:00
// Subtractor implementation
2022-05-03 10:54:30 +00:00
logic [WIDTH-1:0] bbar, diff;
logic carry, neg, overflow;
2021-12-08 20:33:53 +00:00
// subtraction
assign bbar = ~b;
assign {carry, diff} = a + bbar + 1;
2021-12-08 20:33:53 +00:00
// condition code flags based on add/subtract output
2021-12-19 19:49:15 +00:00
assign eq = (diff == 0);
2021-12-08 20:33:53 +00:00
assign neg = diff[WIDTH-1];
// overflow occurs when the numbers being subtracted have the opposite sign
// and the result has the opposite sign fron the first
assign overflow = (a[WIDTH-1] ^ b[WIDTH-1]) & (a[WIDTH-1] ^ diff[WIDTH-1]);
assign lt = neg ^ overflow;
assign ltu = ~carry;
2022-04-17 21:53:11 +00:00
assign flags = {eq, lt, ltu};
2022-05-03 10:54:30 +00:00
endmodule
// *** eventually substitute comparator_flip, which gives slightly better synthesis
module comparator #(parameter WIDTH=64) (
2022-05-03 10:54:30 +00:00
input logic [WIDTH-1:0] a, b,
output logic [2:0] flags);
logic eq, lt, ltu;
// Behavioral description gives best results
2022-05-03 10:54:30 +00:00
assign eq = (a == b);
assign ltu = (a < b);
assign lt = ($signed(a) < $signed(b));
assign flags = {eq, lt, ltu};
endmodule
2022-05-11 18:11:51 +00:00
// This comaprator is best
module comparator_dc_flip #(parameter WIDTH=64) (
2022-05-03 10:54:30 +00:00
input logic [WIDTH-1:0] a, b,
input logic sgnd,
output logic [1:0] flags);
logic eq, lt, ltu;
logic [WIDTH-1:0] af, bf;
// For signed numbers, flip most significant bit
assign af = {a[WIDTH-1] ^ sgnd, a[WIDTH-2:0]};
assign bf = {b[WIDTH-1] ^ sgnd, b[WIDTH-2:0]};
// behavioral description gives best results
2022-05-03 10:54:30 +00:00
assign eq = (af == bf);
assign lt = (af < bf);
assign flags = {eq, lt};
endmodule
module comparator2 #(parameter WIDTH=64) (
input logic clk, reset,
input logic [WIDTH-1:0] a, b,
output logic [2:0] flags);
logic eq, lt, ltu;
/* verilator lint_off UNOPTFLAT */
// prefix implementation
localparam levels=$clog2(WIDTH);
genvar i;
genvar level;
logic [WIDTH-1:0] e[levels:0];
logic [WIDTH-1:0] l[levels:0];
logic eq2, lt2, ltu2;
// Bitwise logic
assign e[0] = a ~^ b; // bitwise equality
assign l[0] = ~a & b; // bitwise less than unsigned: A=0 and B=1
// Recursion
for (level = 1; level<=levels; level++) begin
for (i=0; i<WIDTH/(2**level); i++) begin
assign e[level][i] = e[level-1][i*2+1] & e[level-1][i*2]; // group equal if both parts equal
assign l[level][i] = l[level-1][i*2+1] | e[level-1][i*2+1] & l[level-1][i*2]; // group less if upper is les or upper equal and lower less
end
end
// Output logic
assign eq2 = e[levels][0]; // A = B if all bits are equal
assign ltu2 = l[levels][0]; // A < B if group is less (unsigned)
// A < B signed if less than unsigned and msb is not < unsigned, or if A negative and B positive
assign lt2 = ltu2 & ~l[0][WIDTH-1] | a[WIDTH-1] & ~b[WIDTH-1];
assign flags = {eq2, lt2, ltu2};
/* verilator lint_on UNOPTFLAT */
endmodule
module comparator_prefix #(parameter WIDTH=64) (
2022-05-03 10:54:30 +00:00
input logic [WIDTH-1:0] a, b,
output logic [2:0] flags);
logic eq, lt, ltu;
/* verilator lint_off UNOPTFLAT */
// prefix implementation
localparam levels=$clog2(WIDTH);
genvar i;
genvar level;
2022-04-17 21:53:11 +00:00
logic [WIDTH-1:0] e[levels:0];
logic [WIDTH-1:0] l[levels:0];
logic eq2, lt2, ltu2;
// Bitwise logic
2022-04-17 21:53:11 +00:00
assign e[0] = a ~^ b; // bitwise equality
assign l[0] = ~a & b; // bitwise less than unsigned: A=0 and B=1
// Recursion
for (level = 1; level<=levels; level++) begin
for (i=0; i<WIDTH/(2**level); i++) begin
2022-04-17 21:53:11 +00:00
assign e[level][i] = e[level-1][i*2+1] & e[level-1][i*2]; // group equal if both parts equal
assign l[level][i] = l[level-1][i*2+1] | e[level-1][i*2+1] & l[level-1][i*2]; // group less if upper is les or upper equal and lower less
end
end
// Output logic
2022-04-17 21:53:11 +00:00
assign eq2 = e[levels][0]; // A = B if all bits are equal
assign ltu2 = l[levels][0]; // A < B if group is less (unsigned)
// A < B signed if less than unsigned and msb is not < unsigned, or if A negative and B positive
assign lt2 = ltu2 & ~l[0][WIDTH-1] | a[WIDTH-1] & ~b[WIDTH-1];
assign flags = {eq2, lt2, ltu2};
/* verilator lint_on UNOPTFLAT */
2021-12-08 20:33:53 +00:00
endmodule
module magcompare2b (LT, GT, A, B);
input logic [1:0] A;
input logic [1:0] B;
output logic LT;
output logic GT;
// Determine if A < B using a minimized sum-of-products expression
assign LT = ~A[1]&B[1] | ~A[1]&~A[0]&B[0] | ~A[0]&B[1]&B[0];
// Determine if A > B using a minimized sum-of-products expression
assign GT = A[1]&~B[1] | A[1]&A[0]&~B[0] | A[0]&~B[1]&~B[0];
endmodule // magcompare2b
// 2-bit magnitude comparator
// This module compares two 2-bit values A and B. LT is '1' if A < B
// and GT is '1'if A > B. LT and GT are both '0' if A = B. However,
// this version actually incorporates don't cares into the equation to
// simplify the optimization
module magcompare2c (LT, GT, A, B);
input logic [1:0] A;
input logic [1:0] B;
output logic LT;
output logic GT;
assign LT = B[1] | (!A[1]&B[0]);
assign GT = A[1] | (!B[1]&A[0]);
endmodule // magcompare2b
// This module compares two 64-bit values A and B. LT is '1' if A < B
// and EQ is '1'if A = B. LT and GT are both '0' if A > B.
// This structure was modified so
// that it only does a strict magnitdude comparison, and only
// returns flags for less than (LT) and eqaual to (EQ). It uses a tree
// of 63 2-bit magnitude comparators, followed by one OR gates.
//
module stinecomp64 (FCC, A, B, Sel);
input logic [63:0] A;
input logic [63:0] B;
input logic Sel;
output logic [1:0] FCC;
logic [31:0] s;
logic [31:0] t;
logic [15:0] u;
logic [15:0] v;
logic [7:0] w;
logic [7:0] x;
logic [3:0] y;
logic [3:0] z;
logic [1:0] a;
logic [1:0] b;
logic GT;
logic LT;
logic EQ;
logic [1:0] A2;
logic [1:0] B2;
assign A2 = Sel ? {~A[63], A[62]} : A[63:62];
assign B2 = Sel ? {~B[63], B[62]} : B[63:62];
magcompare2b mag1(s[0], t[0], A[1:0], B[1:0]);
magcompare2b mag2(s[1], t[1], A[3:2], B[3:2]);
magcompare2b mag3(s[2], t[2], A[5:4], B[5:4]);
magcompare2b mag4(s[3], t[3], A[7:6], B[7:6]);
magcompare2b mag5(s[4], t[4], A[9:8], B[9:8]);
magcompare2b mag6(s[5], t[5], A[11:10], B[11:10]);
magcompare2b mag7(s[6], t[6], A[13:12], B[13:12]);
magcompare2b mag8(s[7], t[7], A[15:14], B[15:14]);
magcompare2b mag9(s[8], t[8], A[17:16], B[17:16]);
magcompare2b magA(s[9], t[9], A[19:18], B[19:18]);
magcompare2b magB(s[10], t[10], A[21:20], B[21:20]);
magcompare2b magC(s[11], t[11], A[23:22], B[23:22]);
magcompare2b magD(s[12], t[12], A[25:24], B[25:24]);
magcompare2b magE(s[13], t[13], A[27:26], B[27:26]);
magcompare2b magF(s[14], t[14], A[29:28], B[29:28]);
magcompare2b mag10(s[15], t[15], A[31:30], B[31:30]);
magcompare2b mag11(s[16], t[16], A[33:32], B[33:32]);
magcompare2b mag12(s[17], t[17], A[35:34], B[35:34]);
magcompare2b mag13(s[18], t[18], A[37:36], B[37:36]);
magcompare2b mag14(s[19], t[19], A[39:38], B[39:38]);
magcompare2b mag15(s[20], t[20], A[41:40], B[41:40]);
magcompare2b mag16(s[21], t[21], A[43:42], B[43:42]);
magcompare2b mag17(s[22], t[22], A[45:44], B[45:44]);
magcompare2b mag18(s[23], t[23], A[47:46], B[47:46]);
magcompare2b mag19(s[24], t[24], A[49:48], B[49:48]);
magcompare2b mag1A(s[25], t[25], A[51:50], B[51:50]);
magcompare2b mag1B(s[26], t[26], A[53:52], B[53:52]);
magcompare2b mag1C(s[27], t[27], A[55:54], B[55:54]);
magcompare2b mag1D(s[28], t[28], A[57:56], B[57:56]);
magcompare2b mag1E(s[29], t[29], A[59:58], B[59:58]);
magcompare2b mag1F(s[30], t[30], A[61:60], B[61:60]);
magcompare2b mag20(s[31], t[31], A2, B2);
magcompare2c mag21(u[0], v[0], t[1:0], s[1:0]);
magcompare2c mag22(u[1], v[1], t[3:2], s[3:2]);
magcompare2c mag23(u[2], v[2], t[5:4], s[5:4]);
magcompare2c mag24(u[3], v[3], t[7:6], s[7:6]);
magcompare2c mag25(u[4], v[4], t[9:8], s[9:8]);
magcompare2c mag26(u[5], v[5], t[11:10], s[11:10]);
magcompare2c mag27(u[6], v[6], t[13:12], s[13:12]);
magcompare2c mag28(u[7], v[7], t[15:14], s[15:14]);
magcompare2c mag29(u[8], v[8], t[17:16], s[17:16]);
magcompare2c mag2A(u[9], v[9], t[19:18], s[19:18]);
magcompare2c mag2B(u[10], v[10], t[21:20], s[21:20]);
magcompare2c mag2C(u[11], v[11], t[23:22], s[23:22]);
magcompare2c mag2D(u[12], v[12], t[25:24], s[25:24]);
magcompare2c mag2E(u[13], v[13], t[27:26], s[27:26]);
magcompare2c mag2F(u[14], v[14], t[29:28], s[29:28]);
magcompare2c mag30(u[15], v[15], t[31:30], s[31:30]);
magcompare2c mag31(w[0], x[0], v[1:0], u[1:0]);
magcompare2c mag32(w[1], x[1], v[3:2], u[3:2]);
magcompare2c mag33(w[2], x[2], v[5:4], u[5:4]);
magcompare2c mag34(w[3], x[3], v[7:6], u[7:6]);
magcompare2c mag35(w[4], x[4], v[9:8], u[9:8]);
magcompare2c mag36(w[5], x[5], v[11:10], u[11:10]);
magcompare2c mag37(w[6], x[6], v[13:12], u[13:12]);
magcompare2c mag38(w[7], x[7], v[15:14], u[15:14]);
magcompare2c mag39(y[0], z[0], x[1:0], w[1:0]);
magcompare2c mag3A(y[1], z[1], x[3:2], w[3:2]);
magcompare2c mag3B(y[2], z[2], x[5:4], w[5:4]);
magcompare2c mag3C(y[3], z[3], x[7:6], w[7:6]);
magcompare2c mag3D(a[0], b[0], z[1:0], y[1:0]);
magcompare2c mag3E(a[1], b[1], z[3:2], y[3:2]);
magcompare2c mag3F(LT, GT, b[1:0], a[1:0]);
assign EQ = ~(LT | GT);
assign FCC = {LT, EQ};
endmodule // comp64