cvw/pipelined/src/fpu/fma.sv

851 lines
43 KiB
Systemverilog
Raw Normal View History

///////////////////////////////////////////
//
// Written: Katherine Parry, David Harris
// Modified: 6/23/2021
//
// Purpose: Floating point multiply-accumulate of configurable size
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
2022-01-01 23:50:23 +00:00
// `define FLEN 64//(`Q_SUPPORTED ? 128 : `D_SUPPORTED ? 64 : 32)
// `define NE 11//(`Q_SUPPORTED ? 15 : `D_SUPPORTED ? 11 : 8)
// `define NF 52//(`Q_SUPPORTED ? 112 : `D_SUPPORTED ? 52 : 23)
// `define XLEN 64
// `define IEEE754 1
module fma(
2021-07-24 18:59:57 +00:00
input logic clk,
input logic reset,
input logic FlushM, // flush the memory stage
input logic StallM, // stall memory stage
input logic FmtE, FmtM, // precision 1 = double 0 = single
2022-01-01 23:50:23 +00:00
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
2021-08-28 14:53:35 +00:00
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
2021-07-24 18:59:57 +00:00
input logic XSgnE, YSgnE, ZSgnE, // input signs - execute stage
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // input exponents - execute stage
input logic [`NF:0] XManE, YManE, ZManE, // input mantissa - execute stage
2021-08-28 14:53:35 +00:00
input logic XSgnM, YSgnM, // input signs - memory stage
2021-07-24 18:59:57 +00:00
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents - memory stage
input logic [`NF:0] XManM, YManM, ZManM, // input mantissa - memory stage
input logic XDenormE, YDenormE, ZDenormE, // is denorm
input logic XZeroE, YZeroE, ZZeroE, // is zero - execute stage
input logic XNaNM, YNaNM, ZNaNM, // is NaN
input logic XSNaNM, YSNaNM, ZSNaNM, // is signaling NaN
input logic XZeroM, YZeroM, ZZeroM, // is zero - memory stage
input logic XInfM, YInfM, ZInfM, // is infinity
output logic [`FLEN-1:0] FMAResM, // FMA result
output logic [4:0] FMAFlgM); // FMA flags
2021-08-28 14:53:35 +00:00
//fma/mult/add
// fmadd = 000
// fmsub = 001
// fnmsub = 010 -(a*b)+c
// fnmadd = 011 -(a*b)-c
// fmul = 100
// fadd = 110
// fsub = 111
2021-07-24 18:59:57 +00:00
// signals transfered between pipeline stages
logic [3*`NF+5:0] SumE, SumM;
2021-07-24 18:59:57 +00:00
logic [`NE+1:0] ProdExpE, ProdExpM;
logic AddendStickyE, AddendStickyM;
logic KillProdE, KillProdM;
logic InvZE, InvZM;
logic NegSumE, NegSumM;
logic ZSgnEffE, ZSgnEffM;
logic PSgnE, PSgnM;
logic [8:0] NormCntE, NormCntM;
2022-01-01 23:50:23 +00:00
logic Mult;
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
2021-07-14 21:56:49 +00:00
.ProdExpE, .AddendStickyE, .KillProdE);
2021-07-24 18:59:57 +00:00
// E/M pipeline registers
flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SumE, SumM);
flopenrc #(13) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
2022-01-01 23:50:23 +00:00
flopenrc #(16) EMRegFma4(clk, reset, FlushM, ~StallM,
{AddendStickyE, KillProdE, InvZE, NormCntE, NegSumE, ZSgnEffE, PSgnE, FOpCtrlE[2]&~FOpCtrlE[1]&~FOpCtrlE[0]},
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM, Mult});
fma2 fma2(.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
2021-08-28 14:53:35 +00:00
.FrmM, .FmtM, .ProdExpM, .AddendStickyM, .KillProdM, .SumM, .NegSumM, .InvZM, .NormCntM, .ZSgnEffM, .PSgnM,
2022-01-01 23:50:23 +00:00
.XZeroM, .YZeroM, .ZZeroM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .XSNaNM, .YSNaNM, .ZSNaNM, .Mult,
.FMAResM, .FMAFlgM);
endmodule
module fma1(
2021-08-28 14:53:35 +00:00
input logic XSgnE, YSgnE, ZSgnE, // input's signs
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // biased exponents in B(NE.0) format
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtE, // precision 1 = double 0 = single
2021-08-28 14:53:35 +00:00
output logic [`NE+1:0] ProdExpE, // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
output logic AddendStickyE, // sticky bit that is calculated during alignment
output logic KillProdE, // set the product to zero before addition if the product is too small to matter
2021-08-28 14:53:35 +00:00
output logic [3*`NF+5:0] SumE, // the positive sum
output logic NegSumE, // was the sum negitive
output logic InvZE, // intert Z
output logic ZSgnEffE, // the modified Z sign
output logic PSgnE, // the product's sign
output logic [8:0] NormCntE // normalization shift cnt
2021-07-14 21:56:49 +00:00
);
2021-08-28 14:53:35 +00:00
logic [`NE-1:0] Denorm; // value of a denormaized number based on precision
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
logic [3*`NF+6:0] AlignedAddendInv; // aligned addend possibly inverted
logic [2*`NF+1:0] ProdManKilled; // the product's mantissa possibly killed
logic [3*`NF+6:0] PreSum, NegPreSum; // positive and negitve versions of the sum
2021-12-19 21:51:46 +00:00
logic [`NE-1:0] XExpVal, YExpVal; // exponent value after taking into accound denormals
///////////////////////////////////////////////////////////////////////////////
// Calculate the product
// - When multipliying two fp numbers, add the exponents
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
// - If the product is zero then kill the exponent
// - Multiply the mantissas
///////////////////////////////////////////////////////////////////////////////
// calculate the product's exponent
2021-12-19 21:51:46 +00:00
expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE, .XDenormE, .YDenormE, .XExpVal, .YExpVal,
.Denorm, .ProdExpE);
2021-08-28 14:53:35 +00:00
// multiplication of the mantissa's
mult mult(.XManE, .YManE, .ProdManE);
2021-08-28 14:53:35 +00:00
///////////////////////////////////////////////////////////////////////////////
// Alignment shifter
///////////////////////////////////////////////////////////////////////////////
2021-12-19 21:51:46 +00:00
align align(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm, .XExpVal, .YExpVal,
.AlignedAddendE, .AddendStickyE, .KillProdE);
// calculate the signs and take the opperation into account
sign sign(.FOpCtrlE, .XSgnE, .YSgnE, .ZSgnE, .PSgnE, .ZSgnEffE);
2021-08-28 14:53:35 +00:00
// ///////////////////////////////////////////////////////////////////////////////
// // Addition/LZA
// ///////////////////////////////////////////////////////////////////////////////
2021-12-19 21:51:46 +00:00
add add(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .AlignedAddendInv, .ProdManKilled, .NegSumE, .PreSum, .NegPreSum, .InvZE, .XZeroE, .YZeroE);
2021-07-14 21:56:49 +00:00
2021-12-19 21:51:46 +00:00
loa loa(.A(AlignedAddendInv+{162'b0,InvZE}), .P(ProdManKilled), .NormCntE);
// Choose the positive sum and accompanying LZA result.
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
2021-12-07 22:15:43 +00:00
// assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
2021-08-28 14:53:35 +00:00
endmodule
module expadd(
input logic FmtE, // precision
input logic [`NE-1:0] XExpE, YExpE, // input exponents
input logic XDenormE, YDenormE, // are the inputs denormalized
input logic XZeroE, YZeroE, // are the inputs zero
2021-12-19 21:51:46 +00:00
output logic [`NE-1:0] XExpVal, YExpVal, // Exponent value after taking into account denormals
output logic [`NE-1:0] Denorm, // value of denormalized exponent
output logic [`NE+1:0] ProdExpE // product's exponent B^(1023)NE+2
);
2021-08-28 14:53:35 +00:00
// denormalized numbers have diffrent values depending on which precison it is.
// double - 1
// single - 1023-127+1 = 897
assign Denorm = FmtE ? 1 : 897;
// pick denormalized value or exponent
assign XExpVal = XDenormE ? Denorm : XExpE;
assign YExpVal = YDenormE ? Denorm : YExpE;
// kill the exponent if the product is zero - either X or Y is 0
2021-10-12 16:45:02 +00:00
assign ProdExpE = ({2'b0, XExpVal} + {2'b0, YExpVal} - {2'b0, `NE'h3ff})&{`NE+2{~(XZeroE|YZeroE)}};
endmodule
module mult(
input logic [`NF:0] XManE, YManE,
output logic [2*`NF+1:0] ProdManE
);
assign ProdManE = XManE * YManE;
endmodule
module sign(
input logic [2:0] FOpCtrlE, // precision
input logic XSgnE, YSgnE, ZSgnE, // are the inputs denormalized
output logic PSgnE, // the product's sign - takes opperation into account
output logic ZSgnEffE // Z sign used in fma - takes opperation into account
);
// Calculate the product's sign
// Negate product's sign if FNMADD or FNMSUB
// flip is negation opperation
assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
// flip if subtraction
assign ZSgnEffE = ZSgnE^FOpCtrlE[0];
endmodule
2021-08-28 14:53:35 +00:00
module align(
2021-08-28 14:53:35 +00:00
input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
input logic ZDenormE, // is the input denormal
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
2021-12-19 21:51:46 +00:00
input logic [`NE-1:0] XExpVal, YExpVal, // Exponent value after taking into account denormals
2021-08-28 14:53:35 +00:00
input logic [`NE+1:0] ProdExpE, // the product's exponent
input logic [`NE-1:0] Denorm, // the biased value of a denormalized number
output logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
output logic AddendStickyE, // Sticky bit calculated from the aliged addend
output logic KillProdE // should the product be set to zero
);
logic [`NE+1:0] AlignCnt; // how far to shift the addend to align with the product in Q(NE+2.0) format
logic [4*`NF+5:0] ZManShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
logic [4*`NF+5:0] ZManPreShifted; // input to the alignment shifter U(NF+5.3NF+1)
2021-08-28 14:53:35 +00:00
logic [`NE-1:0] ZExpVal; // Exponent value after taking into account denormals
///////////////////////////////////////////////////////////////////////////////
// Alignment shifter
///////////////////////////////////////////////////////////////////////////////
// determine the shift count for alignment
// - negitive means Z is larger, so shift Z left
// - positive means the product is larger, so shift Z right
2021-08-28 14:53:35 +00:00
// - Denormal numbers have a diffrent exponent value depending on the precision
assign ZExpVal = ZDenormE ? Denorm : ZExpE;
2021-12-19 21:51:46 +00:00
// assign AlignCnt = ProdExpE - {2'b0, ZExpVal} + (`NF+3);
assign AlignCnt = XZeroE|YZeroE ? -1 : {2'b0, XExpVal} + {2'b0, YExpVal} - 1020+`NF - {2'b0, ZExpVal};
// Defualt Addition without shifting
// | 54'b0 | 106'b(product) | 2'b0 |
2021-08-28 14:53:35 +00:00
// | addnend |
// the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
assign ZManPreShifted = {ZManE,(3*`NF+5)'(0)};
always_comb
begin
// If the product is too small to effect the sum, kill the product
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
2021-10-12 16:45:02 +00:00
if ($signed(AlignCnt) < $signed(13'b0)) begin
KillProdE = 1;
2021-08-28 14:53:35 +00:00
ZManShifted = ZManPreShifted;
AddendStickyE = ~(XZeroE|YZeroE);
2021-08-28 14:53:35 +00:00
// If the Addend is shifted right
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
2021-10-12 16:45:02 +00:00
end else if ($signed(AlignCnt)<=$signed(13'd3*13'd`NF+13'd4)) begin
KillProdE = 0;
ZManShifted = ZManPreShifted >> AlignCnt;
AddendStickyE = |(ZManShifted[`NF-1:0]);
2021-04-15 18:28:00 +00:00
// If the addend is too small to effect the addition
// - The addend has to shift two past the end of the addend to be considered too small
// - The 2 extra bits are needed for rounding
2021-04-15 18:28:00 +00:00
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else begin
KillProdE = 0;
ZManShifted = 0;
AddendStickyE = ~ZZeroE;
end
end
2021-08-28 14:53:35 +00:00
assign AlignedAddendE = ZManShifted[4*`NF+5:`NF];
2021-08-28 14:53:35 +00:00
endmodule
module add(
2021-08-28 14:53:35 +00:00
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
input logic [2*`NF+1:0] ProdManE, // the product's mantissa
input logic PSgnE, ZSgnEffE,// the product and modified Z signs
input logic KillProdE, // should the product be set to 0
input logic XZeroE, YZeroE, // is the input zero
2021-12-19 21:51:46 +00:00
output logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
output logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
2021-08-28 14:53:35 +00:00
output logic NegSumE, // was the sum negitive
output logic InvZE, // do you invert Z
2021-12-19 21:51:46 +00:00
output logic [3*`NF+6:0] PreSum, NegPreSum// possibly negitive sum
);
2021-04-15 18:28:00 +00:00
///////////////////////////////////////////////////////////////////////////////
// Addition
///////////////////////////////////////////////////////////////////////////////
// Negate Z when doing one of the following opperations:
// -prod + Z
// prod - Z
assign InvZE = ZSgnEffE ^ PSgnE;
2021-06-04 18:00:11 +00:00
2021-08-28 14:53:35 +00:00
// Choose an inverted or non-inverted addend - the one has to be added now for the LZA
2021-12-07 22:15:43 +00:00
assign AlignedAddendInv = InvZE ? {1'b1, ~AlignedAddendE} : {1'b0, AlignedAddendE};
2021-08-28 14:53:35 +00:00
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
assign ProdManKilled = ProdManE&{2*`NF+2{~KillProdE}};
2021-08-28 14:53:35 +00:00
// Do the addition
2021-08-28 14:53:35 +00:00
// - calculate a positive and negitive sum in parallel
2021-12-07 22:15:43 +00:00
assign PreSum = AlignedAddendInv + {55'b0, ProdManKilled, 2'b0} + {{3*`NF+6{1'b0}}, InvZE};
2021-12-30 00:19:40 +00:00
assign NegPreSum = XZeroE|YZeroE|KillProdE ? {1'b0, AlignedAddendE} : {1'b0, AlignedAddendE} + {{`NF+3{1'b1}}, ~ProdManKilled, 2'b0} + {(3*`NF+7)'(4)};
2021-12-19 21:51:46 +00:00
// Is the sum negitive
assign NegSumE = PreSum[3*`NF+6];
2021-08-28 14:53:35 +00:00
endmodule
2021-08-28 14:53:35 +00:00
2021-12-07 22:15:43 +00:00
module loa( //https://ieeexplore.ieee.org/abstract/document/930098
2021-08-28 14:53:35 +00:00
input logic [3*`NF+6:0] A, // addend
input logic [2*`NF+1:0] P, // product
2021-12-07 22:15:43 +00:00
output logic [8:0] NormCntE // normalization shift count for the positive result
);
logic [3*`NF+6:0] T;
2021-12-19 21:51:46 +00:00
logic [3*`NF+6:0] G;
logic [3*`NF+6:0] Z;
2021-12-30 00:19:40 +00:00
logic [3*`NF+6:0] f;
assign T[3*`NF+6:2*`NF+4] = A[3*`NF+6:2*`NF+4];
2021-12-19 21:51:46 +00:00
assign G[3*`NF+6:2*`NF+4] = 0;
assign Z[3*`NF+6:2*`NF+4] = ~A[3*`NF+6:2*`NF+4];
assign T[2*`NF+3:2] = A[2*`NF+3:2]^P;
2021-12-07 22:15:43 +00:00
assign G[2*`NF+3:2] = A[2*`NF+3:2]&P;
assign Z[2*`NF+3:2] = ~A[2*`NF+3:2]&~P;
assign T[1:0] = A[1:0];
2021-12-07 22:15:43 +00:00
assign G[1:0] = 0;
assign Z[1:0] = ~A[1:0];
2021-12-19 21:51:46 +00:00
2021-06-04 18:00:11 +00:00
// Apply function to determine Leading pattern
2021-12-19 21:51:46 +00:00
// - note: the paper linked above uses the numbering system where 0 is the most significant bit
//f[n] = ~T[n]&T[n-1] note: n is the MSB
//f[i] = (T[i+1]&(G[i]&~Z[i-1] | Z[i]&~G[i-1])) | (~T[i+1]&(Z[i]&~Z[i-1] | G[i]&~G[i-1]))
assign f[3*`NF+6] = ~T[3*`NF+6]&T[3*`NF+5];
assign f[3*`NF+5:0] = (T[3*`NF+6:1]&(G[3*`NF+5:0]&{~Z[3*`NF+4:0], 1'b0} | Z[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1})) | (~T[3*`NF+6:1]&(Z[3*`NF+5:0]&{~Z[3*`NF+4:0], 1'b0} | G[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1}));
2021-06-04 18:00:11 +00:00
2021-12-07 22:15:43 +00:00
lzc lzc(.f, .NormCntE);
endmodule
module lzc(
input logic [3*`NF+6:0] f,
2021-12-07 22:15:43 +00:00
output logic [8:0] NormCntE // normalization shift
);
logic [8:0] i;
always_comb begin
i = 0;
2021-10-12 16:45:02 +00:00
while (~f[3*`NF+6-i] && $unsigned(i) <= $unsigned(9'd3*9'd`NF+9'd6)) i = i+1; // search for leading one
2021-12-07 22:15:43 +00:00
NormCntE = i;
end
endmodule
2021-06-04 18:00:11 +00:00
module fma2(
input logic XSgnM, YSgnM, // input signs
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic FmtM, // precision 1 = double 0 = single
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
input logic AddendStickyM, // sticky bit that is calculated during alignment
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
input logic [3*`NF+5:0] SumM, // the positive sum
input logic NegSumM, // was the sum negitive
input logic InvZM, // do you invert Z
input logic ZSgnEffM, // the modified Z sign - depends on instruction
input logic PSgnM, // the product's sign
2022-01-01 23:50:23 +00:00
input logic Mult, // multiply opperation
input logic [8:0] NormCntM, // the normalization shift count
output logic [`FLEN-1:0] FMAResM, // FMA final result
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
logic [`NF-1:0] ResultFrac; // Result fraction
logic [`NE-1:0] ResultExp; // Result exponent
2021-12-19 21:51:46 +00:00
logic ResultSgn, ResultSgnTmp; // Result sign
logic [`NE+1:0] SumExp; // exponent of the normalized sum
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
logic [`NF+2:0] NormSum; // normalized sum
logic NormSumSticky; // sticky bit calulated from the normalized sum
logic SumZero; // is the sum zero
logic ResultDenorm; // is the result denormalized
logic Sticky, UfSticky; // Sticky bit
2021-12-30 00:19:40 +00:00
logic CalcPlus1; // do you add or subtract one for rounding
logic UfPlus1; // do you add one (for determining underflow flag)
logic Invalid,Underflow,Overflow; // flags
logic Guard, Round; // bits needed to determine rounding
2021-10-23 18:24:36 +00:00
logic UfLSBNormSum; // bits needed to determine rounding for underflow flag
2021-12-30 00:19:40 +00:00
logic [`FLEN:0] RoundAdd; // how much to add to the result
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
2021-12-07 22:15:43 +00:00
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum, .NegSumM,
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
///////////////////////////////////////////////////////////////////////////////
// Rounding
///////////////////////////////////////////////////////////////////////////////
// round to nearest even
// round to zero
// round to -infinity
// round to infinity
// round to nearest max magnitude
2021-12-19 21:51:46 +00:00
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgnTmp, .SumExp,
2021-12-30 00:19:40 +00:00
.CalcPlus1, .UfPlus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .RoundAdd, .UfLSBNormSum);
///////////////////////////////////////////////////////////////////////////////
// Sign calculation
///////////////////////////////////////////////////////////////////////////////
2022-01-01 23:50:23 +00:00
resultsign resultsign(.FrmM, .PSgnM, .ZSgnEffM, .Underflow, .InvZM, .NegSumM, .SumZero, .Mult, .ResultSgnTmp, .ResultSgn);
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
2021-10-23 16:20:24 +00:00
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfLSBNormSum, .Sticky, .UfPlus1,
.FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM);
///////////////////////////////////////////////////////////////////////////////
// Select the result
///////////////////////////////////////////////////////////////////////////////
resultselect resultselect(.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
2021-12-30 00:19:40 +00:00
.FrmM, .FmtM, .AddendStickyM, .KillProdM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .RoundAdd,
.ZSgnEffM, .PSgnM, .ResultSgn, .CalcPlus1, .Invalid, .Overflow, .Underflow,
.ResultDenorm, .ResultExp, .ResultFrac, .FMAResM);
// *** use NF where needed
endmodule
module resultsign(
input logic [2:0] FrmM,
input logic PSgnM, ZSgnEffM,
input logic Underflow,
input logic InvZM,
input logic NegSumM,
input logic SumZero,
2022-01-01 23:50:23 +00:00
input logic Mult,
2021-12-19 21:51:46 +00:00
output logic ResultSgnTmp,
output logic ResultSgn
);
logic ZeroSgn;
2021-12-19 21:51:46 +00:00
// logic ResultSgnTmp;
// Determine the sign if the sum is zero
// if cancelation then 0 unless round to -infinity
2022-01-01 23:50:23 +00:00
// if multiply then Psgn
// otherwise psign
2022-01-01 23:50:23 +00:00
assign ZeroSgn = (PSgnM^ZSgnEffM)&~Underflow&~Mult ? FrmM[1:0] == 2'b10 : PSgnM;
// is the result negitive
// if p - z is the Sum negitive
// if -p + z is the Sum positive
// if -p - z then the Sum is negitive
assign ResultSgnTmp = InvZM&(ZSgnEffM)&NegSumM | InvZM&PSgnM&~NegSumM | ((ZSgnEffM)&PSgnM);
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
endmodule
module normalize(
2021-08-28 14:53:35 +00:00
input logic [3*`NF+5:0] SumM, // the positive sum
input logic [`NE-1:0] ZExpM, // exponent of Z
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
input logic [8:0] NormCntM, // normalization shift count
input logic FmtM, // precision 1 = double 0 = single
2021-08-28 14:53:35 +00:00
input logic KillProdM, // is the product set to zero
input logic AddendStickyM, // the sticky bit caclulated from the aligned addend
2021-12-07 22:15:43 +00:00
input logic NegSumM, // was the sum negitive
2021-08-28 14:53:35 +00:00
output logic [`NF+2:0] NormSum, // normalized sum
output logic SumZero, // is the sum zero
output logic NormSumSticky, UfSticky, // sticky bits
output logic [`NE+1:0] SumExp, // exponent of the normalized sum
output logic ResultDenorm // is the result denormalized
);
2021-08-28 14:53:35 +00:00
logic [`NE+1:0] FracLen; // length of the fraction
logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
logic [3*`NF+5:0] CorrSumShifted; // the shifted sum after LZA correction
2021-12-07 22:15:43 +00:00
logic [3*`NF+8:0] SumShifted; // the shifted sum before LZA correction
2021-08-28 14:53:35 +00:00
logic [`NE+1:0] SumExpTmpTmp; // the exponent of the normalized sum with the `FLEN bias
logic PreResultDenorm; // is the result denormalized - calculated before LZA corection
2021-12-07 22:15:43 +00:00
logic PreResultDenorm2; // is the result denormalized - calculated before LZA corection
logic LZAPlus1, LZAPlus2; // add one or two to the sum's exponent due to LZA correction
2021-06-04 18:00:11 +00:00
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
2021-06-04 18:00:11 +00:00
// Determine if the sum is zero
assign SumZero = ~(|SumM);
2021-06-04 18:00:11 +00:00
// determine the length of the fraction based on precision
assign FracLen = FmtM ? `NF+1 : 13'd24;
2021-06-14 17:42:53 +00:00
2021-08-28 14:53:35 +00:00
// calculate the sum's exponent
2021-12-30 00:19:40 +00:00
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4));
assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
2021-12-07 22:15:43 +00:00
logic SumDLTEZ, SumDGEFL, SumSLTEZ, SumSGEFL;
assign SumDLTEZ = SumExpTmpTmp[`NE+1] | ~|SumExpTmpTmp;
2021-12-30 00:19:40 +00:00
assign SumDGEFL = ($signed(SumExpTmpTmp)>=$signed(-(13'd`NF+13'd2)));
2021-12-07 22:15:43 +00:00
assign SumSLTEZ = $signed(SumExpTmpTmp) <= $signed(13'd1023-13'd127);
2021-12-30 00:19:40 +00:00
assign SumSGEFL = ($signed(SumExpTmpTmp)>=$signed(-13'd25+13'd1023-13'd127)) | ~|SumExpTmpTmp;
assign PreResultDenorm2 = (FmtM ? SumDLTEZ : SumSLTEZ) & (FmtM ? SumDGEFL : SumSGEFL) & ~SumZero;
2021-12-07 22:15:43 +00:00
// 010. when should be 001.
// - shift left one
// - add one from exp
// - if kill prod dont add to exp
2021-07-24 18:59:57 +00:00
2021-08-28 14:53:35 +00:00
// Determine if the result is denormal
2021-12-07 22:15:43 +00:00
// assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
2021-06-04 18:00:11 +00:00
// Determine the shift needed for denormal results
// - if not denorm add 1 to shift out the leading 1
2021-12-30 00:19:40 +00:00
assign DenormShift = PreResultDenorm2 ? SumExpTmp[8:0] : 1;
// Normalize the sum
2021-12-30 00:19:40 +00:00
assign SumShifted = {3'b0, SumM} << NormCntM+DenormShift;
// LZA correction
2021-08-28 14:53:35 +00:00
assign LZAPlus1 = SumShifted[3*`NF+7];
2021-12-07 22:15:43 +00:00
assign LZAPlus2 = SumShifted[3*`NF+8];
// the only possible mantissa for a plus two is all zeroes - a one has to propigate all the way through a sum. so we can leave the bottom statement alone
2021-12-19 21:51:46 +00:00
assign CorrSumShifted = LZAPlus1&~KillProdM ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
2021-08-28 14:53:35 +00:00
assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+3];
// Calculate the sticky bit
2021-08-28 14:53:35 +00:00
assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) | (|CorrSumShifted[136:2*`NF+3]&~FmtM);
assign UfSticky = AddendStickyM | NormSumSticky;
2021-06-04 18:00:11 +00:00
// Determine sum's exponent
2022-01-01 23:50:23 +00:00
// if plus1 If plus2 if said denorm but norm plus 1 if said denorm but norm plus 2
assign SumExp = (SumExpTmp+{12'b0, LZAPlus1&~KillProdM}+{11'b0, LZAPlus2&~KillProdM, 1'b0}+{12'b0, ~ResultDenorm&PreResultDenorm2&~KillProdM}+{12'b0, &SumExpTmp&SumShifted[3*`NF+6]&~KillProdM}) & {`NE+2{~(SumZero|ResultDenorm)}};
2021-08-28 14:53:35 +00:00
// recalculate if the result is denormalized
2021-12-07 22:15:43 +00:00
assign ResultDenorm = PreResultDenorm2&~SumShifted[3*`NF+6]&~SumShifted[3*`NF+7];
2021-04-15 18:28:00 +00:00
endmodule
2021-04-15 18:28:00 +00:00
module fmaround(
2021-08-28 14:53:35 +00:00
input logic FmtM, // precision 1 = double 0 = single
input logic [2:0] FrmM, // rounding mode
input logic UfSticky, // sticky bit for underlow calculation
input logic [`NF+2:0] NormSum, // normalized sum
input logic AddendStickyM, // addend's sticky bit
input logic NormSumSticky, // normalized sum's sticky bit
input logic ZZeroM, // is Z zero
input logic InvZM, // invert Z
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
2021-12-19 21:51:46 +00:00
input logic ResultSgnTmp, // the result's sign
2021-12-30 00:19:40 +00:00
output logic CalcPlus1, UfPlus1, // do you add or subtract on from the result
2021-08-28 14:53:35 +00:00
output logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
output logic [`NF-1:0] ResultFrac, // Result fraction
output logic [`NE-1:0] ResultExp, // Result exponent
output logic Sticky, // sticky bit
2021-12-30 00:19:40 +00:00
output logic [`FLEN:0] RoundAdd, // how much to add to the result
2021-10-23 18:24:36 +00:00
output logic Round, Guard, UfLSBNormSum // bits needed to calculate rounding
);
2021-08-28 14:53:35 +00:00
logic LSBNormSum; // bit used for rounding - least significant bit of the normalized sum
logic SubBySmallNum, UfSubBySmallNum; // was there supposed to be a subtraction by a small number
2021-12-30 00:19:40 +00:00
logic UfGuard; // guard bit used to caluculate underflow
logic UfCalcPlus1, CalcMinus1, Plus1, Minus1; // do you add or subtract on from the result
2021-08-28 14:53:35 +00:00
logic [`NF-1:0] NormSumTruncated; // the normalized sum trimed to fit the mantissa
2021-10-23 18:24:36 +00:00
logic UfRound;
2021-04-15 18:28:00 +00:00
///////////////////////////////////////////////////////////////////////////////
// Rounding
///////////////////////////////////////////////////////////////////////////////
2021-06-04 18:00:11 +00:00
// round to nearest even
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1 if result is odd (LSBNormSum = 1)
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
2021-06-04 18:00:11 +00:00
// round to zero - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
2021-06-04 18:00:11 +00:00
// round to -infinity
// - Plus1 if negative unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
2021-06-04 18:00:11 +00:00
// round to infinity
// - Plus1 if positive unless a small number was supposed to be subtracted from a result with guard and round bits of 0
// - subtract 1 if a small number was supposed to be subtracted from a negative result with guard and round bits of 0
2021-06-04 18:00:11 +00:00
// round to nearest max magnitude
// {Guard, Round, Sticky}
// 0xx - do nothing
// 100 - tie - Plus1
// - don't add 1 if a small number was supposed to be subtracted
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
// 110/111 - Plus1
2021-06-14 17:42:53 +00:00
// determine guard, round, and least significant bit of the result
assign Guard = FmtM ? NormSum[2] : NormSum[31];
assign Round = FmtM ? NormSum[1] : NormSum[30];
assign LSBNormSum = FmtM ? NormSum[3] : NormSum[32];
2021-06-04 18:00:11 +00:00
// used to determine underflow flag
assign UfGuard = FmtM ? NormSum[1] : NormSum[30];
assign UfRound = FmtM ? NormSum[0] : NormSum[29];
assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[31];
2021-06-04 18:00:11 +00:00
// determine sticky
assign Sticky = UfSticky | NormSum[0];
// Deterimine if a small number was supposed to be subtrated
assign SubBySmallNum = AddendStickyM & InvZM & ~(NormSumSticky|UfRound) & ~ZZeroM; //***here
assign UfSubBySmallNum = AddendStickyM & InvZM & ~(NormSumSticky) & ~ZZeroM; //***here
2021-06-04 18:00:11 +00:00
always_comb begin
// Determine if you add 1
case (FrmM)
3'b000: CalcPlus1 = Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&LSBNormSum&~SubBySmallNum));//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
2021-12-19 21:51:46 +00:00
3'b010: CalcPlus1 = ResultSgnTmp & ~(SubBySmallNum & ~Guard & ~Round);//round down
3'b011: CalcPlus1 = ~ResultSgnTmp & ~(SubBySmallNum & ~Guard & ~Round);//round up
3'b100: CalcPlus1 = (Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&~SubBySmallNum)));//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
// Determine if you add 1 (for underflow flag)
case (FrmM)
3'b000: UfCalcPlus1 = UfGuard & (UfRound | (UfSticky&UfRound|~UfSubBySmallNum) | (~Sticky&UfLSBNormSum&~UfSubBySmallNum));//round to nearest even
3'b001: UfCalcPlus1 = 0;//round to zero
2021-12-19 21:51:46 +00:00
3'b010: UfCalcPlus1 = ResultSgnTmp & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round down
3'b011: UfCalcPlus1 = ~ResultSgnTmp & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round up
3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (UfSticky&~(~UfRound&UfSubBySmallNum)) | (~Sticky&~UfSubBySmallNum)));//round to nearest max magnitude
default: UfCalcPlus1 = 1'bx;
endcase
// Determine if you subtract 1
case (FrmM)
3'b000: CalcMinus1 = 0;//round to nearest even
3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
2021-12-19 21:51:46 +00:00
3'b010: CalcMinus1 = ~ResultSgnTmp & ~Guard & ~Round & SubBySmallNum;//round down
3'b011: CalcMinus1 = ResultSgnTmp & ~Guard & ~Round & SubBySmallNum;//round up
3'b100: CalcMinus1 = 0;//round to nearest max magnitude
default: CalcMinus1 = 1'bx;
endcase
end
// If an answer is exact don't round
assign Plus1 = CalcPlus1 & (Sticky | Guard | Round);
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard);//UfRound is part of sticky
assign Minus1 = CalcMinus1 & (Sticky | Guard | Round);
// Compute rounded result
2021-07-21 02:04:21 +00:00
assign RoundAdd = FmtM ? Minus1 ? {`FLEN+1{1'b1}} : {{{`FLEN{1'b0}}}, Plus1} :
Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0};
assign NormSumTruncated = {NormSum[`NF+2:32], NormSum[31:3]&{29{FmtM}}};
assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
2021-07-21 02:04:21 +00:00
assign ResultExp = FullResultExp[`NE-1:0];
2021-06-04 18:00:11 +00:00
endmodule
2021-06-04 18:00:11 +00:00
module fmaflags(
2021-08-28 14:53:35 +00:00
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
input logic XInfM, YInfM, ZInfM, // inputs are infinity
2021-08-28 14:53:35 +00:00
input logic XZeroM, YZeroM, // inputs are zero
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
2021-08-28 14:53:35 +00:00
input logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
input logic ZSgnEffM, PSgnM, // the product and modified Z signs
2021-10-23 16:20:24 +00:00
input logic Round, Guard, UfLSBNormSum, Sticky, UfPlus1, // bits used to determine rounding
2021-08-28 14:53:35 +00:00
input logic FmtM, // precision 1 = double 0 = single
output logic Invalid, Overflow, Underflow, // flags used to select the result
output logic [4:0] FMAFlgM // FMA flags
);
2021-08-28 14:53:35 +00:00
logic SigNaN; // is an input a signaling NaN
logic UnderflowFlag, Inexact; // flags
2021-06-14 17:42:53 +00:00
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
// Set Invalid flag for following cases:
// 1) any input is a signaling NaN
// 2) Inf - Inf (unless x or y is NaN)
// 3) 0 * Inf
2021-07-24 18:59:57 +00:00
2021-07-14 21:56:49 +00:00
assign SigNaN = XSNaNM | YSNaNM | ZSNaNM;
assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgnM ^ ZSgnEffM) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
// Set Overflow flag if the number is too big to be represented
// - Don't set the overflow flag if an overflowed result isn't outputed
logic LtMaxExp;
assign LtMaxExp = FmtM ? &FullResultExp[`NE-1:0] | FullResultExp[`NE] : &FullResultExp[7:0] | FullResultExp[8];
assign Overflow = LtMaxExp & ~FullResultExp[`NE+1]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Underflow flag if the number is too small to be represented in normal numbers
// - Don't set the underflow flag if the result is exact
2021-07-24 18:59:57 +00:00
assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
2021-07-21 02:04:21 +00:00
assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
// - Don't set the underflow flag if an underflowed result isn't outputed
assign Inexact = (Sticky|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Combine flags
// - FMA can't set the Divide by zero flag
// - Don't set the underflow flag if the result was rounded up to a normal number
2021-07-02 16:40:58 +00:00
assign FMAFlgM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact};
2021-12-30 00:19:40 +00:00
endmodule
module resultselect(
input logic XSgnM, YSgnM, // input signs
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic FmtM, // precision 1 = double 0 = single
input logic AddendStickyM, // sticky bit that is calculated during alignment
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
input logic ZSgnEffM, // the modified Z sign - depends on instruction
input logic PSgnM, // the product's sign
input logic ResultSgn, // the result's sign
input logic CalcPlus1, // rounding bits
input logic [`FLEN:0] RoundAdd, // how much to add to the result
input logic Invalid, Overflow, Underflow, // flags
input logic ResultDenorm, // is the result denormalized
input logic [`NE-1:0] ResultExp, // Result exponent
input logic [`NF-1:0] ResultFrac, // Result fraction
output logic [`FLEN-1:0] FMAResM // FMA final result
);
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
2021-12-30 20:55:48 +00:00
generate
if(`IEEE754) begin:nan
2021-12-30 00:19:40 +00:00
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
2022-01-01 23:50:23 +00:00
assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
2021-12-30 20:55:48 +00:00
end else begin:nan
2021-12-30 00:19:40 +00:00
assign XNaNResult = FmtM ? {1'b0, XExpM, 1'b1, 51'b0} : {{32{1'b1}}, 1'b0, XExpM[7:0], 1'b1, 22'b0};
assign YNaNResult = FmtM ? {1'b0, YExpM, 1'b1, 51'b0} : {{32{1'b1}}, 1'b0, YExpM[7:0], 1'b1, 22'b0};
assign ZNaNResult = FmtM ? {1'b0, ZExpM, 1'b1, 51'b0} : {{32{1'b1}}, 1'b0, ZExpM[7:0], 1'b1, 22'b0};
2022-01-01 23:50:23 +00:00
assign InvalidResult = FmtM ? {1'b0, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, 1'b0, 8'hff, 1'b1, 22'b0};
2021-12-30 00:19:40 +00:00
end
endgenerate
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
{{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} + (RoundAdd[59:29]&{31{AddendStickyM}})};
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + {63'b0,(CalcPlus1&(AddendStickyM|FrmM[1]))} : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
assign FMAResM = XNaNM ? XNaNResult :
YNaNM ? YNaNResult :
ZNaNM ? ZNaNResult :
Invalid ? InvalidResult :
XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, XExpM[7:0], XManM[51:29]} :
YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, YExpM[7:0], YManM[51:29]} :
ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
KillProdM ? KillProdResult :
Overflow ? OverflowResult :
Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult :
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
{{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]};
2021-06-14 17:42:53 +00:00
endmodule