/////////////////////////////////////////// // ahblite.sv // // Written: David_Harris@hmc.edu 9 January 2021 // Modified: // // Purpose: AHB Lite External Bus Unit // See ARM_HIH0033A_AMBA_AHB-Lite_SPEC 1.0 // Arbitrates requests from instruction and data streams // Connects hart to peripherals and I/O pins on SOC // Bus width presently matches XLEN // Anticipate replacing this with an AXI bus interface to communicate with FPGA DRAM/Flash controllers // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT // OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////// `include "wally-config.vh" package ahbliteState; typedef enum {IDLE, MEMREAD, MEMWRITE, INSTRREAD, INSTRREADC, ATOMICREAD, ATOMICWRITE, MMUTRANSLATE, MMUIDLE} statetype; endpackage module ahblite ( input logic clk, reset, input logic StallW, FlushW, // Load control input logic UnsignedLoadM, input logic [1:0] AtomicM, input logic [6:0] Funct7M, // Signals from Instruction Cache input logic [`XLEN-1:0] InstrPAdrF, // *** rename these to match block diagram input logic InstrReadF, output logic [`XLEN-1:0] InstrRData, // Signals from Data Cache input logic [`XLEN-1:0] MemPAdrM, input logic MemReadM, MemWriteM, input logic [`XLEN-1:0] WriteDataM, input logic [1:0] MemSizeM, // Signals from MMU input logic [`XLEN-1:0] MMUPAdr, input logic MMUTranslate, MMUTranslationComplete, output logic [`XLEN-1:0] MMUReadPTE, output logic MMUReady, // Return from bus output logic [`XLEN-1:0] ReadDataW, // AHB-Lite external signals input logic [`AHBW-1:0] HRDATA, input logic HREADY, HRESP, output logic HCLK, HRESETn, output logic [31:0] HADDR, output logic [`AHBW-1:0] HWDATA, output logic HWRITE, output logic [2:0] HSIZE, output logic [2:0] HBURST, output logic [3:0] HPROT, output logic [1:0] HTRANS, output logic HMASTLOCK, // Delayed signals for writes output logic [2:0] HADDRD, output logic [3:0] HSIZED, output logic HWRITED, // Stalls output logic InstrStall,/*InstrUpdate, */DataStall // *** add a chip-level ready signal as part of handshake ); logic GrantData; logic [31:0] AccessAddress; logic [2:0] AccessSize, PTESize, ISize; logic [`AHBW-1:0] HRDATAMasked, ReadDataM, ReadDataNewW, ReadDataOldW, WriteData; logic IReady, DReady; logic CaptureDataM; // Describes type of access logic Atomic, Execute, Write, Read; assign HCLK = clk; assign HRESETn = ~reset; // *** initially support AHBW = XLEN // track bus state // Data accesses have priority over instructions. However, if a data access comes // while an instruction read is occuring, the instruction read finishes before // the data access can take place. import ahbliteState::*; statetype BusState, NextBusState; flopenl #(.TYPE(statetype)) busreg(HCLK, ~HRESETn, 1'b1, NextBusState, IDLE, BusState); always_comb case (BusState) IDLE: if (MMUTranslate) NextBusState = MMUTRANSLATE; else if (AtomicM[1]) NextBusState = ATOMICREAD; else if (MemReadM) NextBusState = MEMREAD; // Memory has priority over instructions else if (MemWriteM) NextBusState = MEMWRITE; else if (InstrReadF) NextBusState = INSTRREAD; else NextBusState = IDLE; MMUTRANSLATE: if (~HREADY) NextBusState = MMUTRANSLATE; else NextBusState = IDLE; ATOMICREAD: if (~HREADY) NextBusState = ATOMICREAD; else NextBusState = ATOMICWRITE; ATOMICWRITE: if (~HREADY) NextBusState = ATOMICWRITE; else if (InstrReadF) NextBusState = INSTRREAD; else NextBusState = IDLE; MEMREAD: if (~HREADY) NextBusState = MEMREAD; else if (InstrReadF) NextBusState = INSTRREADC; else NextBusState = IDLE; MEMWRITE: if (~HREADY) NextBusState = MEMWRITE; else if (InstrReadF) NextBusState = INSTRREAD; else NextBusState = IDLE; INSTRREAD: if (~HREADY) NextBusState = INSTRREAD; else NextBusState = IDLE; // if (InstrReadF still high) INSTRREADC: if (~HREADY) NextBusState = INSTRREADC; // "C" for "competing", meaning please don't mess up the memread in the W stage. else NextBusState = IDLE; default: NextBusState = IDLE; endcase // stall signals // Note that we need to extend both stalls when MMUTRANSLATE goes to idle, // since translation might not be complete. assign #2 DataStall = ((NextBusState == MEMREAD) || (NextBusState == MEMWRITE) || (NextBusState == ATOMICREAD) || (NextBusState == ATOMICWRITE) || (NextBusState == MMUTRANSLATE) || (MMUTranslate && ~MMUTranslationComplete)); // *** Could get finer grained stalling if we distinguish between MMU // instruction address translation and data address translation assign #1 InstrStall = ((NextBusState == INSTRREAD) || (NextBusState == INSTRREADC) || (NextBusState == MMUTRANSLATE) || (MMUTranslate && ~MMUTranslationComplete)); // Determine access type (important for determining whether to fault) assign Atomic = ((NextBusState == ATOMICREAD) || (NextBusState == ATOMICWRITE)); assign Execute = ((NextBusState == INSTRREAD) || (NextBusState == INSTRREADC)); assign Write = ((NextBusState == MEMWRITE) || (NextBusState == ATOMICWRITE)); assign Read = ((NextBusState == MEMREAD) || (NextBusState == ATOMICREAD) || (NextBusState == MMUTRANSLATE)); // bus outputs assign #1 GrantData = (NextBusState == MEMREAD) || (NextBusState == MEMWRITE) || (NextBusState == ATOMICREAD) || (NextBusState == ATOMICWRITE); assign #1 AccessAddress = (GrantData) ? MemPAdrM[31:0] : InstrPAdrF[31:0]; assign #1 HADDR = (MMUTranslate) ? MMUPAdr[31:0] : AccessAddress; generate if (`XLEN == 32) assign PTESize = 3'b010; // in rv32, PTEs are 4 bytes else assign PTESize = 3'b011; // in rv64, PTEs are 8 bytes endgenerate assign ISize = 3'b010; // 32 bit instructions for now; later improve for filling cache with full width; ignored on reads anyway assign #1 AccessSize = (GrantData) ? {1'b0, MemSizeM} : ISize; assign #1 HSIZE = (MMUTranslate) ? PTESize : AccessSize; assign HBURST = 3'b000; // Single burst only supported; consider generalizing for cache fillsfH assign HPROT = 4'b0011; // not used; see Section 3.7 assign HTRANS = (NextBusState != IDLE) ? 2'b10 : 2'b00; // NONSEQ if reading or writing, IDLE otherwise assign HMASTLOCK = 0; // no locking supported assign HWRITE = (NextBusState == MEMWRITE) || (NextBusState == ATOMICWRITE); // delay write data by one cycle for flop #(`XLEN) wdreg(HCLK, WriteData, HWDATA); // delay HWDATA by 1 cycle per spec; *** assumes AHBW = XLEN // delay signals for subword writes flop #(3) adrreg(HCLK, HADDR[2:0], HADDRD); flop #(4) sizereg(HCLK, {UnsignedLoadM, HSIZE}, HSIZED); flop #(1) writereg(HCLK, HWRITE, HWRITED); // Route signals to Instruction and Data Caches // *** assumes AHBW = XLEN assign MMUReady = (BusState == MMUTRANSLATE && NextBusState == IDLE); assign InstrRData = HRDATA; assign MMUReadPTE = HRDATA; assign ReadDataM = HRDATAMasked; // changed from W to M dh 2/7/2021 assign CaptureDataM = ((BusState == MEMREAD) && (NextBusState != MEMREAD)) || ((BusState == ATOMICREAD) && (NextBusState == ATOMICWRITE)); // We think this introduces an unnecessary cycle of latency in memory accesses // *** can the following be simplified down to one register? // *** examine more closely over summer? flopenr #(`XLEN) ReadDataNewWReg(clk, reset, CaptureDataM, ReadDataM, ReadDataNewW); flopenr #(`XLEN) ReadDataOldWReg(clk, reset, CaptureDataM, ReadDataNewW, ReadDataOldW); assign ReadDataW = (BusState == INSTRREADC) ? ReadDataOldW : ReadDataNewW; // Extract and sign-extend subwords if necessary subwordread swr(.*); // Handle AMO instructions if applicable generate if (`A_SUPPORTED) begin logic [`XLEN-1:0] AMOResult; // amoalu amoalu(.a(HRDATA), .b(WriteDataM), .funct(Funct7M), .width(MemSizeM), // .result(AMOResult)); amoalu amoalu(.srca(ReadDataW), .srcb(WriteDataM), .funct(Funct7M), .width(MemSizeM), .result(AMOResult)); mux2 #(`XLEN) wdmux(WriteDataM, AMOResult, AtomicM[1], WriteData); end else assign WriteData = WriteDataM; endgenerate endmodule