#!/usr/bin/python3 ########################################### ## Written: Ross Thompson ross1728@gmail.com ## Created: 4 Jan 2022 ## Modified: ## ## Purpose: Parses the performance counters from a modelsim trace. ## ## A component of the CORE-V-WALLY configurable RISC-V project. ## ## Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University ## ## SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 ## ## Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file ## except in compliance with the License, or, at your option, the Apache License version 2.0. You ## may obtain a copy of the License at ## ## https:##solderpad.org/licenses/SHL-2.1/ ## ## Unless required by applicable law or agreed to in writing, any work distributed under the ## License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, ## either express or implied. See the License for the specific language governing permissions ## and limitations under the License. ################################################################################################ import os import sys import matplotlib.pyplot as plt import re def ComputeCPI(benchmark): 'Computes and inserts CPI into benchmark stats.' (nameString, opt, dataDict) = benchmark CPI = 1.0 * int(dataDict['Mcycle']) / int(dataDict['InstRet']) dataDict['CPI'] = CPI def ComputeBranchDirMissRate(benchmark): 'Computes and inserts branch direction miss prediction rate.' (nameString, opt, dataDict) = benchmark branchDirMissRate = 100.0 * int(dataDict['Br Dir Wrong']) / int(dataDict['Br Count']) dataDict['BDMR'] = branchDirMissRate def ComputeBranchTargetMissRate(benchmark): 'Computes and inserts branch target miss prediction rate.' # *** this is wrong in the verilog test bench (nameString, opt, dataDict) = benchmark branchTargetMissRate = 100.0 * int(dataDict['Br Target Wrong']) / (int(dataDict['Br Count']) + int(dataDict['Jump, JR, Jal']) + int(dataDict['ret'])) dataDict['BTMR'] = branchTargetMissRate def ComputeRASMissRate(benchmark): 'Computes and inserts return address stack miss prediction rate.' (nameString, opt, dataDict) = benchmark RASMPR = 100.0 * int(dataDict['RAS Wrong']) / int(dataDict['ret']) dataDict['RASMPR'] = RASMPR def ComputeInstrClassMissRate(benchmark): 'Computes and inserts instruction class miss prediction rate.' (nameString, opt, dataDict) = benchmark ClassMPR = 100.0 * int(dataDict['Instr Class Wrong']) / int(dataDict['InstRet']) dataDict['ClassMPR'] = ClassMPR def ComputeICacheMissRate(benchmark): 'Computes and inserts instruction class miss prediction rate.' (nameString, opt, dataDict) = benchmark ICacheMR = 100.0 * int(dataDict['I Cache Miss']) / int(dataDict['I Cache Access']) dataDict['ICacheMR'] = ICacheMR def ComputeDCacheMissRate(benchmark): 'Computes and inserts instruction class miss prediction rate.' (nameString, opt, dataDict) = benchmark DCacheMR = 100.0 * int(dataDict['D Cache Miss']) / int(dataDict['D Cache Access']) dataDict['DCacheMR'] = DCacheMR def ComputeAll(benchmarks): for benchmark in benchmarks: ComputeCPI(benchmark) ComputeBranchDirMissRate(benchmark) ComputeBranchTargetMissRate(benchmark) ComputeRASMissRate(benchmark) ComputeInstrClassMissRate(benchmark) ComputeICacheMissRate(benchmark) ComputeDCacheMissRate(benchmark) def printStats(benchmark): (nameString, opt, dataDict) = benchmark CPI = dataDict['CPI'] BDMR = dataDict['BDMR'] BTMR = dataDict['BTMR'] RASMPR = dataDict['RASMPR'] print('Test', nameString) print('Compile configuration', opt) print('CPI \t\t\t %1.2f' % CPI) print('Branch Dir Pred Miss Rate %2.2f' % BDMR) print('Branch Target Pred Miss Rate %2.2f' % BTMR) print('RAS Miss Rate \t\t %1.2f' % RASMPR) print('Instr Class Miss Rate %1.2f' % dataDict['ClassMPR']) print('I Cache Miss Rate %1.4f' % dataDict['ICacheMR']) print('D Cache Miss Rate %1.4f' % dataDict['DCacheMR']) print() def ProcessFile(fileName): '''Extract preformance counters from a modelsim log. Outputs a list of tuples for each test/benchmark. The tuple contains the test name, optimization characteristics, and dictionary of performance counters.''' # 1 find lines with Read memfile and extract test name # 2 parse counters into a list of (name, value) tuples (dictionary maybe?) benchmarks = [] transcript = open(fileName, 'r') HPMClist = { } testName = '' for line in transcript.readlines(): lineToken = line.split() if(len(lineToken) > 3 and lineToken[1] == 'Read' and lineToken[2] == 'memfile'): opt = lineToken[3].split('/')[-4] testName = lineToken[3].split('/')[-1].split('.')[0] HPMClist = { } elif(len(lineToken) > 4 and lineToken[1][0:3] == 'Cnt'): countToken = line.split('=')[1].split() value = int(countToken[0]) name = ' '.join(countToken[1:]) HPMClist[name] = value elif ('is done' in line): benchmarks.append((testName, opt, HPMClist)) return benchmarks def ComputeArithmeticAverage(benchmarks): average = {} index = 0 for (testName, opt, HPMClist) in benchmarks: for field in HPMClist: value = HPMClist[field] if field not in average: average[field] = value else: average[field] += value index += 1 benchmarks.append(('All', '', average)) def FormatToPlot(currBenchmark): names = [] values = [] for config in currBenchmark: #print ('config' , config) names.append(config[0]) values.append(config[1]) return (names, values) def GeometricAverage(benchmarks, field): Product = 1 index = 0 for (testName, opt, HPMCList) in benchmarks: #print(HPMCList) Product *= HPMCList[field] index += 1 return Product ** (1.0/index) def ComputeGeometricAverage(benchmarks): fields = ['BDMR', 'BTMR', 'RASMPR', 'ClassMPR', 'ICacheMR', 'DCacheMR'] AllAve = {} for field in fields: Product = 1 index = 0 for (testName, opt, HPMCList) in benchmarks: #print(HPMCList) Product *= HPMCList[field] index += 1 AllAve[field] = Product ** (1.0/index) benchmarks.append(('All', '', AllAve)) if(sys.argv[1] == '-b'): configList = [] summery = 0 if(sys.argv[2] == '-s'): summery = 1 sys.argv = sys.argv[1::] for config in sys.argv[2::]: benchmarks = ProcessFile(config) #ComputeArithmeticAverage(benchmarks) ComputeAll(benchmarks) ComputeGeometricAverage(benchmarks) #print('CONFIG: %s GEO MEAN: %f' % (config, GeometricAverage(benchmarks, 'BDMR'))) configList.append((config.split('.')[0], benchmarks)) # Merge all configruations into a single list benchmarkAll = [] for (config, benchmarks) in configList: #print(config) for benchmark in benchmarks: (nameString, opt, dataDict) = benchmark #print("BENCHMARK") #print(nameString) #print(opt) #print(dataDict) benchmarkAll.append((nameString, opt, config, dataDict)) #print('ALL!!!!!!!!!!') #for bench in benchmarkAll: # print('BENCHMARK') # print(bench) #print('ALL!!!!!!!!!!') # now extract all branch prediction direction miss rates for each # namestring + opt, config benchmarkDict = { } for benchmark in benchmarkAll: (name, opt, config, dataDict) = benchmark if name+'_'+opt in benchmarkDict: benchmarkDict[name+'_'+opt].append((config, dataDict['BDMR'])) else: benchmarkDict[name+'_'+opt] = [(config, dataDict['BDMR'])] size = len(benchmarkDict) index = 1 if(summery == 0): #print('Number of plots', size) for benchmarkName in benchmarkDict: currBenchmark = benchmarkDict[benchmarkName] (names, values) = FormatToPlot(currBenchmark) print(names, values) plt.subplot(6, 7, index) plt.bar(names, values) plt.title(benchmarkName) plt.ylabel('BR Dir Miss Rate (%)') #plt.xlabel('Predictor') index += 1 else: combined = benchmarkDict['All_'] (name, value) = FormatToPlot(combined) lst = [] dct = {} category = [] length = [] accuracy = [] for index in range(0, len(name)): match = re.match(r"([a-z]+)([0-9]+)", name[index], re.I) percent = 100 -value[index] if match: (PredType, size) = match.groups() category.append(PredType) length.append(size) accuracy.append(percent) if(PredType not in dct): dct[PredType] = ([size], [percent]) else: (currSize, currPercent) = dct[PredType] currSize.append(size) currPercent.append(percent) dct[PredType] = (currSize, currPercent) print(dct) for cat in dct: (x, y) = dct[cat] plt.scatter(x, y, label='k') plt.plot(x, y) plt.ylabel('Prediction Accuracy') plt.xlabel('Size (b or k)') plt.legend(loc='upper left') plt.show() else: # steps 1 and 2 benchmarks = ProcessFile(sys.argv[1]) ComputeAverage(benchmarks) # 3 process into useful data # cache hit rates # cache fill time # branch predictor status # hazard counts # CPI # instruction distribution ComputeAll(benchmarks) for benchmark in benchmarks: printStats(benchmark)