/////////////////////////////////////////// // dtim.sv // // Written: David_Harris@hmc.edu 9 January 2021 // Modified: // // Purpose: Data tightly integrated memory // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT // OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////// `include "wally-config.vh" module dtim ( input logic HCLK, HRESETn, input logic [1:0] MemRWtim, input logic [18:0] HADDR, input logic [`XLEN-1:0] HWDATA, input logic HSELTim, output logic [`XLEN-1:0] HREADTim, output logic HRESPTim, HREADYTim ); logic [`XLEN-1:0] RAM[0:65535]; logic [18:0] HWADDR; logic [`XLEN-1:0] HREADTim0; // logic [`XLEN-1:0] write; logic [15:0] entry; logic memread, memwrite; logic [3:0] busycount; // busy FSM to extend READY signal always_ff @(posedge HCLK, negedge HRESETn) if (~HRESETn) begin HREADYTim <= 1; end else begin if (HREADYTim & HSELTim) begin busycount <= 0; HREADYTim <= #1 0; end else if (~HREADYTim) begin if (busycount == 2) begin // TIM latency, for testing purposes HREADYTim <= #1 1; end else begin busycount <= busycount + 1; end end end /* always_ff @(posedge HCLK, negedge HRESETn) if (~HRESETn) begin HREADYTim <= 0; end else begin HREADYTim <= HSELTim; // always respond one cycle later end */ assign memread = MemRWtim[1]; assign memwrite = MemRWtim[0]; // always_ff @(posedge HCLK) // memwrite <= MemRWtim[0]; // delay memwrite to write phase assign HRESPTim = 0; // OK // assign HREADYTim = 1; // Respond immediately; *** extend this // Model memory read and write generate if (`XLEN == 64) begin // always_ff @(negedge HCLK) // if (memwrite) RAM[HWADDR[17:3]] <= HWDATA; always_ff @(posedge HCLK) begin //if (memwrite) RAM[HADDR[17:3]] <= HWDATA; HWADDR <= HADDR; HREADTim0 <= RAM[HADDR[17:3]]; if (memwrite && HREADYTim) RAM[HWADDR[17:3]] <= HWDATA; end end else begin // always_ff @(negedge HCLK) // if (memwrite) RAM[HWADDR[17:2]] <= HWDATA; always_ff @(posedge HCLK) begin //if (memwrite) RAM[HADDR[17:2]] <= HWDATA; HWADDR <= HADDR; HREADTim0 <= RAM[HADDR[17:2]]; if (memwrite && HREADYTim) RAM[HWADDR[17:2]] <= HWDATA; end end endgenerate assign HREADTim = HREADYTim ? HREADTim0 : 'bz; endmodule