/////////////////////////////////////////// // // Written: 6/23/2021 me@KatherineParry.com, David_Harris@hmc.edu // Modified: // // Purpose: Leading Zero Anticipator // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fmalza( // [Schmookler & Nowka, Leading zero anticipation and detection, IEEE Sym. Computer Arithmetic, 2001] input logic [3*`NF+6:0] A, // addend input logic [2*`NF+3:0] P, // product output logic [$clog2(3*`NF+7)-1:0] SCnt // normalization shift count for the positive result ); logic [3*`NF+6:0] T; logic [3*`NF+6:0] G; logic [3*`NF+6:0] Z; logic [3*`NF+6:0] f; assign T[3*`NF+6:2*`NF+4] = A[3*`NF+6:2*`NF+4]; assign G[3*`NF+6:2*`NF+4] = 0; assign Z[3*`NF+6:2*`NF+4] = ~A[3*`NF+6:2*`NF+4]; assign T[2*`NF+3:0] = A[2*`NF+3:0]^P; assign G[2*`NF+3:0] = A[2*`NF+3:0]&P; assign Z[2*`NF+3:0] = ~A[2*`NF+3:0]&~P; // Apply function to determine Leading pattern // - note: the paper linked above uses the numbering system where 0 is the most significant bit //f[n] = ~T[n]&T[n-1] note: n is the MSB //f[i] = (T[i+1]&(G[i]&~Z[i-1] | Z[i]&~G[i-1])) | (~T[i+1]&(Z[i]&~Z[i-1] | G[i]&~G[i-1])) assign f[3*`NF+6] = ~T[3*`NF+6]&T[3*`NF+5]; assign f[3*`NF+5:0] = (T[3*`NF+6:1]&(G[3*`NF+5:0]&{~Z[3*`NF+4:0], 1'b0} | Z[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1})) | (~T[3*`NF+6:1]&(Z[3*`NF+5:0]&{~Z[3*`NF+4:0], 1'b0} | G[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1})); lzc #(3*`NF+7) lzc (.num(f), .ZeroCnt(SCnt)); endmodule