/////////////////////////////////////////// // fdivsqrtpreproc.sv // // Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu // Modified:13 January 2022 // // Purpose: Combined Divide and Square Root Floating Point and Integer Unit // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fdivsqrtpreproc ( input logic clk, input logic IFDivStartE, input logic [`NF:0] Xm, Ym, input logic [`NE-1:0] Xe, Ye, input logic [`FMTBITS-1:0] Fmt, input logic Sqrt, input logic XZeroE, input logic [2:0] Funct3E, output logic [`NE+1:0] QeM, output logic [`DIVb+3:0] X, output logic [`DIVb-1:0] DPreproc, // Int-specific input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B input logic MDUE, W64E, output logic ISpecialCaseE, output logic [`DIVBLEN:0] nE, nM, mM, output logic NegQuotM, ALTBM, MDUM, W64M, output logic AsM, BZeroM, BZeroE, output logic [`XLEN-1:0] AM ); logic [`DIVb-1:0] XPreproc; logic [`DIVb:0] PreSqrtX; logic [`DIVb+3:0] DivX, DivXShifted, SqrtX, PreShiftX; // Variations of dividend, to be muxed logic [`NE+1:0] QeE; // Quotient Exponent (FP only) logic [`DIVb-1:0] IFNormLenX, IFNormLenD; // Correctly-sized inputs for iterator logic [`DIVBLEN:0] mE, ell; // Leading zeros of inputs logic NumerZeroE; // Numerator is zero (X or A) logic AZeroE; // A is Zero for integer division if (`IDIV_ON_FPU) begin:intpreproc // Int Supported logic signedDiv, NegQuotE; logic AsBit, BsBit, AsE, BsE, ALTBE; logic [`XLEN-1:0] AE, BE, PosA, PosB; logic [`DIVBLEN:0] ZeroDiff, p; // Extract inputs, signs, zero, depending on W64 mode if applicable assign signedDiv = ~Funct3E[0]; assign NegQuotE = AsE ^ BsE; // Quotient is negative // Source handling if (`XLEN==64) begin // 64-bit, supports W64 mux2 #(1) azeromux(~(|ForwardedSrcAE), ~(|ForwardedSrcAE[31:0]), W64E, AZeroE); mux2 #(1) bzeromux(~(|ForwardedSrcBE), ~(|ForwardedSrcBE[31:0]), W64E, BZeroE); mux2 #(1) abitmux(ForwardedSrcAE[63], ForwardedSrcAE[31], W64E, AsBit); mux2 #(1) bbitmux(ForwardedSrcBE[63], ForwardedSrcBE[31], W64E, BsBit); mux2 #(64) amux(ForwardedSrcAE, {{(`XLEN-32){AsE}}, ForwardedSrcAE[31:0]}, W64E, AE); mux2 #(64) bmux(ForwardedSrcBE, {{(`XLEN-32){BsE}}, ForwardedSrcBE[31:0]}, W64E, BE); assign AsE = signedDiv & AsBit; assign BsE = signedDiv & BsBit; end else begin // 32 bits only assign AsE = signedDiv & ForwardedSrcAE[31]; assign BsE = signedDiv & ForwardedSrcBE[31]; assign AE = ForwardedSrcAE; assign BE = ForwardedSrcBE; assign AZeroE = ~(|ForwardedSrcAE); assign BZeroE = ~(|ForwardedSrcBE); end // Force integer inputs to be postiive mux2 #(`XLEN) posamux(AE, -AE, AsE, PosA); mux2 #(`XLEN) posbmux(BE, -BE, BsE, PosB); // Select integer or floating point inputs mux2 #(`DIVb) ifxmux({Xm, {(`DIVb-`NF-1){1'b0}}}, {PosA, {(`DIVb-`XLEN){1'b0}}}, MDUE, IFNormLenX); mux2 #(`DIVb) ifdmux({Ym, {(`DIVb-`NF-1){1'b0}}}, {PosB, {(`DIVb-`XLEN){1'b0}}}, MDUE, IFNormLenD); // calculate number of fractional bits p assign ZeroDiff = mE - ell; // Difference in number of leading zeros assign ALTBE = ZeroDiff[`DIVBLEN]; // A less than B (A has more leading zeros) mux2 #(`DIVBLEN+1) pmux(ZeroDiff, {(`DIVBLEN+1){1'b0}}, ALTBE, p); // *** is there a more graceful way to write these constants // Integer special cases (terminate immediately) assign ISpecialCaseE = BZeroE | ALTBE; /* verilator lint_off WIDTH */ // calculate number of fractional digits nE and right shift amount RightShiftX to complete in discrete number of steps if (`LOGRK > 0) begin // more than 1 bit per cycle logic [`LOGRK-1:0] IntTrunc, RightShiftX; logic [`DIVBLEN:0] TotalIntBits, IntSteps; assign TotalIntBits = `LOGR + p; // Total number of result bits (r integer bits plus p fractional bits) assign IntTrunc = TotalIntBits % `RK; // Truncation check for ceiling operator assign IntSteps = (TotalIntBits >> `LOGRK) + |IntTrunc; // Number of steps for int div assign nE = (IntSteps * `DIVCOPIES) - 1; // Fractional digits assign RightShiftX = `RK - 1 - ((TotalIntBits - 1) % `RK); // Right shift amount assign DivXShifted = DivX >> RightShiftX; // shift X by up to R*K-1 to complete in nE steps end else begin // radix 2 1 copy doesn't require shifting assign nE = p; assign DivXShifted = DivX; end /* verilator lint_on WIDTH */ // Selet integer or floating-point operands mux2 #(1) numzmux(XZeroE, AZeroE, MDUE, NumerZeroE); mux2 #(`DIVb+4) xmux(PreShiftX, DivXShifted, MDUE, X); // pipeline registers flopen #(1) mdureg(clk, IFDivStartE, MDUE, MDUM); flopen #(1) w64reg(clk, IFDivStartE, W64E, W64M); flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM); flopen #(1) negquotreg(clk, IFDivStartE, NegQuotE, NegQuotM); flopen #(1) bzeroreg(clk, IFDivStartE, BZeroE, BZeroM); flopen #(1) asignreg(clk, IFDivStartE, AsE, AsM); flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, nE, nM); flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, mE, mM); flopen #(`XLEN) srcareg(clk, IFDivStartE, AE, AM); end else begin // Int not supported assign IFNormLenX = {Xm, {(`DIVb-`NF-1){1'b0}}}; assign IFNormLenD = {Ym, {(`DIVb-`NF-1){1'b0}}}; assign NumerZeroE = XZeroE; assign X = PreShiftX; end // count leading zeros for Subnorm FP and to normalize integer inputs lzc #(`DIVb) lzcX (IFNormLenX, ell); lzc #(`DIVb) lzcY (IFNormLenD, mE); // Normalization shift assign XPreproc = IFNormLenX << (ell + {{`DIVBLEN{1'b0}}, 1'b1}); assign DPreproc = IFNormLenD << (mE + {{`DIVBLEN{1'b0}}, 1'b1}); // append leading 1 (for nonzero inputs) and conditionally shift left by one to avoid sqrt(2) mux2 #(`DIVb+1) sqrtxmux({~NumerZeroE, XPreproc}, {1'b0, ~NumerZeroE, XPreproc[`DIVb-1:1]}, (Xe[0]^ell[0]), PreSqrtX); assign DivX = {3'b000, ~NumerZeroE, XPreproc}; // Sqrt is initialized on step one as R(X-1), so depends on Radix if (`RADIX == 2) assign SqrtX = {3'b111, PreSqrtX}; else assign SqrtX = {2'b11, PreSqrtX, 1'b0}; mux2 #(`DIVb+4) prexmux(DivX, SqrtX, Sqrt, PreShiftX); // Floating-point exponent fdivsqrtexpcalc expcalc(.Fmt, .Xe, .Ye, .Sqrt, .XZero(XZeroE), .ell, .m(mE), .Qe(QeE)); flopen #(`NE+2) expreg(clk, IFDivStartE, QeE, QeM); endmodule