/////////////////////////////////////////// // fdivsqrtpreproc.sv // // Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu // Modified:13 January 2022 // // Purpose: Combined Divide and Square Root Floating Point and Integer Unit // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fdivsqrtpreproc ( input logic clk, input logic IFDivStartE, input logic [`NF:0] Xm, Ym, input logic [`NE-1:0] Xe, Ye, input logic [`FMTBITS-1:0] Fmt, input logic Sqrt, input logic XZeroE, input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B input logic [2:0] Funct3E, input logic MDUE, W64E, output logic [`DIVBLEN:0] nE, nM, mM, output logic NegQuotM, ALTBM, MDUM, W64M, output logic AsM, AZeroM, BZeroM, AZeroE, BZeroE, output logic [`NE+1:0] QeM, output logic [`DIVb+3:0] X, output logic [`DIVb-1:0] DPreproc, output logic [`XLEN-1:0] AM ); logic [`DIVb-1:0] XPreproc; logic [`DIVb:0] SqrtX; logic [`DIVb+3:0] DivX; logic [`NE+1:0] QeE; // Intdiv signals logic [`DIVb-1:0] IFNormLenX, IFNormLenD; logic [`DIVBLEN:0] mE; logic [`DIVBLEN:0] pPlusr, pPrCeil, p, ell; logic [`LOGRK:0] pPrTrunc; logic [`DIVb+3:0] PreShiftX; logic NumZeroE; // ***can probably merge X LZC with conversion // cout the number of leading zeros if (`IDIV_ON_FPU) begin logic signedDiv; logic AsE, BsE, ALTBE, NegQuotE; logic [`XLEN-1:0] AE, BE; logic [`XLEN-1:0] PosA, PosB; logic [`DIVBLEN:0] ZeroDiff, IntBits; logic [`LOGRK-1:0] RightShiftX; // Extract inputs, signs, zero, depending on W64 mode if applicable assign signedDiv = ~Funct3E[0]; if (`XLEN==64) begin // 64-bit, supports W64 assign AsE = signedDiv & (W64E ? ForwardedSrcAE[31] : ForwardedSrcAE[`XLEN-1]); assign BsE = signedDiv & (W64E ? ForwardedSrcBE[31] : ForwardedSrcBE[`XLEN-1]); assign AE = W64E ? {{(`XLEN-32){AsE}}, ForwardedSrcAE[31:0]} : ForwardedSrcAE; assign BE = W64E ? {{(`XLEN-32){BsE}}, ForwardedSrcBE[31:0]} : ForwardedSrcBE; assign AZeroE = W64E ? ~(|ForwardedSrcAE[31:0]) : ~(|ForwardedSrcAE); assign BZeroE = W64E ? ~(|ForwardedSrcBE[31:0]) : ~(|ForwardedSrcBE); end else begin // 32 bits only assign AsE = signedDiv & ForwardedSrcAE[`XLEN-1]; assign BsE = signedDiv & ForwardedSrcBE[`XLEN-1]; assign AE = ForwardedSrcAE; assign BE = ForwardedSrcBE; assign AZeroE = ~(|ForwardedSrcAE); assign BZeroE = ~(|ForwardedSrcBE); end // Quotient is negative assign NegQuotE = (AsE ^ BsE) & MDUE; // Force inputs to be postiive assign PosA = AsE ? -AE : AE; assign PosB = BsE ? -BE : BE; // Select integer or floating point inputs assign IFNormLenX = MDUE ? {PosA, {(`DIVb-`XLEN){1'b0}}} : {Xm, {(`DIVb-`NF-1){1'b0}}}; assign IFNormLenD = MDUE ? {PosB, {(`DIVb-`XLEN){1'b0}}} : {Ym, {(`DIVb-`NF-1){1'b0}}}; // Difference in number of leading zeros assign ZeroDiff = mE - ell; assign ALTBE = ZeroDiff[`DIVBLEN]; // A less than B assign p = ALTBE ? '0 : ZeroDiff; /* verilator lint_off WIDTH */ // right shift amount to complete in discrete number of steps assign pPlusr = `LOGR + p; assign pPrTrunc = pPlusr % `RK; assign pPrCeil = (pPlusr >> `LOGRK) + |pPrTrunc; assign nE = (pPrCeil * `DIVCOPIES) - 1; assign IntBits = `LOGR + p - 1; assign RightShiftX = `RK - 1 - IntBits % `RK; /* verilator lint_on WIDTH */ // Selet integer or floating-point operands assign NumZeroE = MDUE ? AZeroE : XZeroE; assign X = MDUE ? DivX >> RightShiftX : PreShiftX; // pipeline registers flopen #(1) mdureg(clk, IFDivStartE, MDUE, MDUM); flopen #(1) w64reg(clk, IFDivStartE, W64E, W64M); flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, nE, nM); flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, mE, mM); flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM); flopen #(1) negquotreg(clk, IFDivStartE, NegQuotE, NegQuotM); flopen #(1) azeroreg(clk, IFDivStartE, AZeroE, AZeroM); flopen #(1) bzeroreg(clk, IFDivStartE, BZeroE, BZeroM); flopen #(1) asignreg(clk, IFDivStartE, AsE, AsM); flopen #(`XLEN) srcareg(clk, IFDivStartE, AE, AM); end else begin assign IFNormLenX = {Xm, {(`DIVb-`NF-1){1'b0}}}; assign IFNormLenD = {Ym, {(`DIVb-`NF-1){1'b0}}}; assign NumZeroE = XZeroE; assign X = PreShiftX; end // count leading zeros for denorm FP and to normalize integer inputs lzc #(`DIVb) lzcX (IFNormLenX, ell); lzc #(`DIVb) lzcY (IFNormLenD, mE); // Normalization shift assign XPreproc = IFNormLenX << (ell + {{`DIVBLEN{1'b0}}, 1'b1}); assign DPreproc = IFNormLenD << (mE + {{`DIVBLEN{1'b0}}, 1'b1}); // append leading 1 (for nonzero inputs) and zero-extend assign SqrtX = (Xe[0]^ell[0]) ? {1'b0, ~NumZeroE, XPreproc[`DIVb-1:1]} : {~NumZeroE, XPreproc}; // Bottom bit of XPreproc is always zero because DIVb is larger than XLEN and NF assign DivX = {3'b000, ~NumZeroE, XPreproc}; // *** explain why X is shifted between radices (initial assignment of WS=RX) if (`RADIX == 2) assign PreShiftX = Sqrt ? {3'b111, SqrtX} : DivX; else assign PreShiftX = Sqrt ? {2'b11, SqrtX, 1'b0} : DivX; // Floating-point exponent fdivsqrtexpcalc expcalc(.Fmt, .Xe, .Ye, .Sqrt, .XZero(XZeroE), .ell, .m(mE), .Qe(QeE)); flopen #(`NE+2) expreg(clk, IFDivStartE, QeE, QeM); endmodule