/////////////////////////////////////////// // srt.sv // // Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu // Modified:13 January 2022 // // Purpose: Combined Divide and Square Root Floating Point and Integer Unit // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module srt( input logic clk, input logic DivStart, input logic DivBusy, input logic [`NE-1:0] Xe, Ye, input logic XZeroE, YZeroE, input logic Sqrt, input logic [`DIVLEN+3:0] X, input logic [`DIVLEN+3:0] Dpreproc, input logic [$clog2(`NF+2)-1:0] XZeroCnt, YZeroCnt, input logic NegSticky, output logic [`QLEN-1-(`RADIX/4):0] Qm, output logic [`DIVLEN+3:0] NextWSN, NextWCN, output logic [`DIVLEN+3:0] StickyWSA, output logic [`DIVLEN+3:0] FirstWS, FirstWC, output logic [`XLEN-1:0] Rem ); /* verilator lint_off UNOPTFLAT */ logic [`DIVLEN+3:0] WSA[`DIVCOPIES-1:0]; logic [`DIVLEN+3:0] WCA[`DIVCOPIES-1:0]; logic [`DIVLEN+3:0] WS[`DIVCOPIES-1:0]; logic [`DIVLEN+3:0] WC[`DIVCOPIES-1:0]; logic [`QLEN-1:0] Q[`DIVCOPIES-1:0]; logic [`QLEN-1:0] QM[`DIVCOPIES-1:0]; logic [`QLEN-1:0] QNext[`DIVCOPIES-1:0]; logic [`QLEN-1:0] QMNext[`DIVCOPIES-1:0]; logic [`DIVLEN+3:0] S[`DIVCOPIES-1:0]; //***change to QLEN??? logic [`DIVLEN+3:0] SM[`DIVCOPIES-1:0]; logic [`DIVLEN+3:0] SNext[`DIVCOPIES-1:0]; logic [`DIVLEN+3:0] SMNext[`DIVCOPIES-1:0]; logic [`DIVLEN+3:0] C[`DIVCOPIES-1:0]; /* verilator lint_on UNOPTFLAT */ logic [`DIVLEN+3:0] WSN, WCN; logic [`DIVLEN+3:0] D, DBar, D2, DBar2; logic [$clog2(`XLEN+1)-1:0] intExp; logic intSign; logic [`QLEN-1:0] QMMux; logic [`DIVLEN+3:0] CMux; logic [`DIVLEN+3:0] SMux; // Top Muxes and Registers // When start is asserted, the inputs are loaded into the divider. // Otherwise, the divisor is retained and the partial remainder // is fed back for the next iteration. // - when the start signal is asserted X and 0 are loaded into WS and WC // - otherwise load WSA into the flipflop // - the assumed one is added to D since it's always normalized (and X/0 is a special case handeled by result selection) // - XZeroE is used as the assumed one to avoid creating a sticky bit - all other numbers are normalized if (`RADIX == 2) begin : nextw assign NextWSN = {WSA[`DIVCOPIES-1][`DIVLEN+2:0], 1'b0}; assign NextWCN = {WCA[`DIVCOPIES-1][`DIVLEN+2:0], 1'b0}; end else begin assign NextWSN = {WSA[`DIVCOPIES-1][`DIVLEN+1:0], 2'b0}; assign NextWCN = {WCA[`DIVCOPIES-1][`DIVLEN+1:0], 2'b0}; end mux2 #(`DIVLEN+4) wsmux(NextWSN, X, DivStart, WSN); flopen #(`DIVLEN+4) wsflop(clk, DivStart|DivBusy, WSN, WS[0]); mux2 #(`DIVLEN+4) wcmux(NextWCN, {`DIVLEN+4{1'b0}}, DivStart, WCN); flopen #(`DIVLEN+4) wcflop(clk, DivStart|DivBusy, WCN, WC[0]); flopen #(`DIVLEN+4) dflop(clk, DivStart, Dpreproc, D); mux2 #(`DIVLEN+4) Cmux({2'b11, C[`DIVCOPIES-1][`DIVLEN+3:2]}, {5'b11111, Sqrt, {(`DIVLEN-2){1'b0}}}, DivStart, CMux); flop #(`DIVLEN+4) cflop(clk, CMux, C[0]); // Divisor Selections // - choose the negitive version of what's being selected assign DBar = ~D; if(`RADIX == 4) begin : d2 assign DBar2 = {~D[`DIVLEN+2:0], 1'b1}; assign D2 = {D[`DIVLEN+2:0], 1'b0}; end genvar i; generate for(i=0; $unsigned(i)<`DIVCOPIES; i++) begin : interations divinteration divinteration(.D, .DBar, .D2, .DBar2, .Sqrt, .WS(WS[i]), .WC(WC[i]), .WSA(WSA[i]), .WCA(WCA[i]), .Q(Q[i]), .QM(QM[i]), .QNext(QNext[i]), .QMNext(QMNext[i]), .C(C[i]), .S(S[i]), .SM(SM[i]), .SNext(SNext[i]), .SMNext(SMNext[i])); if(i<(`DIVCOPIES-1)) begin if (`RADIX==2)begin assign WS[i+1] = {WSA[i][`DIVLEN+1:0], 1'b0}; assign WC[i+1] = {WCA[i][`DIVLEN+1:0], 1'b0}; end else begin assign WS[i+1] = {WSA[i][`DIVLEN+1:0], 2'b0}; assign WC[i+1] = {WCA[i][`DIVLEN+1:0], 2'b0}; assign C[i+1] = {2'b11, C[i][`DIVLEN+3:2]}; end assign Q[i+1] = QNext[i]; assign QM[i+1] = QMNext[i]; assign S[i+1] = SNext[i]; assign SM[i+1] = SMNext[i]; end end endgenerate // if starting a new divison set Q to 0 and QM to -1 mux2 #(`QLEN) QMmux(QMNext[`DIVCOPIES-1], {`QLEN{1'b1}}, DivStart, QMMux); flopenr #(`QLEN) Qreg(clk, DivStart, DivBusy, QNext[`DIVCOPIES-1], Q[0]); flopen #(`QLEN) QMreg(clk, DivBusy, QMMux, QM[0]); flopr #(`DIVLEN+4) SMreg(clk, DivStart, SMNext[`DIVCOPIES-1], SM[0]); mux2 #(`DIVLEN+4) Smux(SNext[`DIVCOPIES-1], {3'b000, Sqrt, {(`DIVLEN){1'b0}}}, DivStart, SMux); flop #(`DIVLEN+4) Sreg(clk, SMux, S[0]); always_comb if(Sqrt) if(NegSticky) Qm = SM[0][`QLEN-1-(`RADIX/4):0]; else Qm = S[0][`QLEN-1-(`RADIX/4):0]; else if(NegSticky) Qm = QM[0][`QLEN-1-(`RADIX/4):0]; else Qm = Q[0][`QLEN-1-(`RADIX/4):0]; assign FirstWS = WS[0]; assign FirstWC = WC[0]; if(`RADIX==2) if (`DIVCOPIES == 1) assign StickyWSA = {WSA[0][`DIVLEN+2:0], 1'b0}; else assign StickyWSA = {WSA[1][`DIVLEN+2:0], 1'b0}; endmodule //////////////// // Submodules // //////////////// /* verilator lint_off UNOPTFLAT */ module divinteration ( input logic [`DIVLEN+3:0] D, input logic [`DIVLEN+3:0] DBar, D2, DBar2, input logic [`QLEN-1:0] Q, QM, input logic [`DIVLEN+3:0] S, SM, input logic [`DIVLEN+3:0] WS, WC, input logic [`DIVLEN+3:0] C, input logic Sqrt, output logic [`QLEN-1:0] QNext, QMNext, output logic [`DIVLEN+3:0] SNext, SMNext, output logic [`DIVLEN+3:0] WSA, WCA ); /* verilator lint_on UNOPTFLAT */ logic [`DIVLEN+3:0] Dsel; logic [3:0] q; logic qp, qz;//, qn; logic [`DIVLEN+3:0] F; logic [`DIVLEN+3:0] AddIn; // Qmient Selection logic // Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm) // q encoding: // 1000 = +2 // 0100 = +1 // 0000 = 0 // 0010 = -1 // 0001 = -2 if(`RADIX == 2) begin : qsel qsel2 qsel2(WS[`DIVLEN+3:`DIVLEN], WC[`DIVLEN+3:`DIVLEN], qp, qz);//, qn); end else begin qsel4 qsel4(.D, .WS, .WC, .Sqrt, .q); fgen4 fgen4(.s(q), .C, .S, .SM, .F); end if(`RADIX == 2) begin : dsel assign Dsel = {`DIVLEN+4{~qz}}&(qp ? DBar : D); end else begin always_comb case (q) 4'b1000: Dsel = DBar2; 4'b0100: Dsel = DBar; 4'b0000: Dsel = '0; 4'b0010: Dsel = D; 4'b0001: Dsel = D2; default: Dsel = 'x; endcase end // Partial Product Generation // WSA, WCA = WS + WC - qD assign AddIn = Sqrt ? F : Dsel; if (`RADIX == 2) begin : csa csa #(`DIVLEN+4) csa(WS, WC, AddIn, qp, WSA, WCA); end else begin csa #(`DIVLEN+4) csa(WS, WC, AddIn, |q[3:2], WSA, WCA); end if (`RADIX == 2) begin : otfc otfc2 otfc2(.qp, .qz, .Q, .QM, .QNext, .QMNext); end else begin otfc4 otfc4(.q, .Q, .QM, .QNext, .QMNext); sotfc4 sotfc4(.s(q), .Sqrt, .C, .S, .SM, .SNext, .SMNext); end endmodule ///////// // csa // ///////// module csa #(parameter N=69) ( input logic [N-1:0] in1, in2, in3, input logic cin, output logic [N-1:0] out1, out2 ); // This block adds in1, in2, in3, and cin to produce // a result out1 / out2 in carry-save redundant form. // cin is just added to the least significant bit and // is Startuired to handle adding a negative divisor. // Fortunately, the carry (out2) is shifted left by one // bit, leaving room in the least significant bit to // insert cin. assign out1 = in1 ^ in2 ^ in3; assign out2 = {in1[N-2:0] & (in2[N-2:0] | in3[N-2:0]) | (in2[N-2:0] & in3[N-2:0]), cin}; endmodule