/////////////////////////////////////////// // 1 port sram. // // Written: ross1728@gmail.com May 3, 2021 // Basic sram with 1 read write port. // When clk rises Addr and LineWriteData are sampled. // Following the clk edge read data is output from the sampled Addr. // Write // // Purpose: Storage and read/write access to data cache data, tag valid, dirty, and replacement. // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// // WIDTH is number of bits in one "word" of the memory, DEPTH is number of such words `include "wally-config.vh" module ram2p1r1wbefix #(parameter DEPTH=128, WIDTH=256) ( input logic clk, input logic ce1, ce2, input logic [$clog2(DEPTH)-1:0] ra1, input logic [WIDTH-1:0] wd2, input logic [$clog2(DEPTH)-1:0] wa2, input logic we2, input logic [(WIDTH-1)/8:0] bwe2, output logic [WIDTH-1:0] rd1); logic [WIDTH-1:0] mem[DEPTH-1:0]; // *************************************************************************** // TRUE Smem macro // *************************************************************************** // *************************************************************************** // READ first SRAM model // *************************************************************************** integer i; // Read always @(posedge clk) if(ce1) rd1 <= #1 mem[ra1]; // Write divided into part for bytes and part for extra msbs if(WIDTH >= 8) always @(posedge clk) if (ce2 & we2) for(i = 0; i < WIDTH/8; i++) if(bwe2[i]) mem[wa2][i*8 +: 8] <= #1 wd2[i*8 +: 8]; if (WIDTH%8 != 0) // handle msbs if width not a multiple of 8 always @(posedge clk) if (ce2 & we2 & bwe2[WIDTH/8]) mem[wa2][WIDTH-1:WIDTH-WIDTH%8] <= #1 wd2[WIDTH-1:WIDTH-WIDTH%8]; endmodule