/////////////////////////////////////////// // // Written: Katherine Parry, David Harris // Modified: 6/23/2021 // // Purpose: Floating point multiply-accumulate of configurable size // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module postprocess( // general signals input logic XSgnM, YSgnM, // input signs input logic [`NE-1:0] ZExpM, // input exponents input logic [`NF:0] XManM, YManM, ZManM, // input mantissas input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude input logic [`FMTBITS-1:0] FmtM, // precision 1 = double 0 = single input logic [2:0] FOpCtrlM, // choose which opperation (look below for values) input logic XZeroM, YZeroM, ZZeroM, // inputs are zero input logic XInfM, YInfM, ZInfM, // inputs are infinity input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs input logic ZDenormM, // is the original precision denormalized input logic [1:0] PostProcSelM, // select result to be written to fp register //fma signals input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias input logic AddendStickyM, // sticky bit that is calculated during alignment input logic KillProdM, // set the product to zero before addition if the product is too small to matter input logic [3*`NF+5:0] SumM, // the positive sum input logic NegSumM, // was the sum negitive input logic InvZM, // do you invert Z input logic ZSgnEffM, // the modified Z sign - depends on instruction input logic PSgnM, // the product's sign input logic [$clog2(3*`NF+7)-1:0] FmaNormCntM, // the normalization shift count //divide signals input logic [$clog2(`DIVLEN/2+3)-1:0] EarlyTermShiftDiv2M, input logic [`NE+1:0] DivCalcExpM, // the calculated expoent input logic DivStickyM, input logic DivNegStickyM, input logic [`DIVLEN+2:0] Quot, // conversion signals input logic [`NE:0] CvtCalcExpM, // the calculated expoent input logic CvtResDenormUfM, input logic [`LOGCVTLEN-1:0] CvtShiftAmtM, // how much to shift by input logic CvtResSgnM, // the result's sign input logic FWriteIntM, // is fp->int (since it's writting to the integer register) input logic [`CVTLEN-1:0] CvtLzcInM, // input to the Leading Zero Counter (priority encoder) input logic IntZeroM, // is the input zero // final results output logic [`FLEN-1:0] PostProcResM, // FMA final result output logic [4:0] PostProcFlgM, output logic [`XLEN-1:0] FCvtIntResM // the int conversion result ); // general signals logic [`NF-1:0] ResFrac; // Result fraction logic [`NE-1:0] ResExp; // Result exponent logic [`CORRSHIFTSZ-1:0] CorrShifted; // corectly shifted fraction logic [`NE+1:0] FullResExp; // ResExp with bits to determine sign and overflow logic Sticky; // Sticky bit logic UfPlus1; // do you add one (for determining underflow flag) logic Round; // bits needed to determine rounding logic [`FLEN:0] RoundAdd; // how much to add to the result logic [$clog2(`NORMSHIFTSZ)-1:0] ShiftAmt; // normalization shift count logic [`NORMSHIFTSZ-1:0] ShiftIn; // is the sum zero logic [`NORMSHIFTSZ-1:0] Shifted; // the shifted result logic Plus1; // add one to the final result? logic IntInvalid, Overflow, Invalid; // flags logic [`NE+1:0] RoundExp; logic ResSgn; logic RoundSgn; logic UfLSBRes; logic [`FMTBITS-1:0] OutFmt; // fma signals logic [`NE+1:0] SumExp; // exponent of the normalized sum logic SumZero; // is the sum zero logic [3*`NF+8:0] FmaShiftIn; // is the sum zero logic [`NE+1:0] ConvNormSumExp; // exponent of the normalized sum not taking into account denormal or zero results logic PreResultDenorm; // is the result denormalized - calculated before LZA corection logic [$clog2(3*`NF+7)-1:0] FmaShiftAmt; // normalization shift count // division singals logic [$clog2(`NORMSHIFTSZ)-1:0] DivShiftAmt; logic [`NORMSHIFTSZ-1:0] DivShiftIn; logic [`NE+1:0] CorrDivExp; logic DivByZero; logic DivResDenorm; logic [`NE+1:0] DivDenormShift; // conversion signals logic [`CVTLEN+`NF:0] CvtShiftIn; // number to be shifted logic [1:0] NegResMSBS; logic [`XLEN+1:0] NegRes; logic CvtResUf; // readability signals logic Mult; // multiply opperation logic Int64; // is the integer 64 bits? logic Signed; // is the opperation with a signed integer? logic IntToFp; // is the opperation an int->fp conversion? logic ToInt; // is the opperation an fp->int conversion? logic CvtOp; logic FmaOp; logic DivOp; logic InfIn; logic NaNIn; logic Sqrt; // signals to help readability assign Signed = FOpCtrlM[0]; assign Int64 = FOpCtrlM[1]; assign IntToFp = FOpCtrlM[2]; assign ToInt = FWriteIntM; assign Mult = FOpCtrlM[2]&~FOpCtrlM[1]&~FOpCtrlM[0]; assign CvtOp = (PostProcSelM == 2'b00); assign FmaOp = (PostProcSelM == 2'b10); assign DivOp = (PostProcSelM == 2'b01); assign Sqrt = FOpCtrlM[0]; // is there an input of infinity or NaN being used assign InfIn = (XInfM&~(IntToFp&CvtOp))|(YInfM&~CvtOp)|(ZInfM&FmaOp); assign NaNIn = (XNaNM&~(IntToFp&CvtOp))|(YNaNM&~CvtOp)|(ZNaNM&FmaOp); // choose the ouptut format depending on the opperation // - fp -> fp: OpCtrl contains the percision of the output // - otherwise: FmtM contains the percision of the output if (`FPSIZES == 2) assign OutFmt = IntToFp|~CvtOp ? FmtM : (FOpCtrlM[1:0] == `FMT); else if (`FPSIZES == 3 | `FPSIZES == 4) assign OutFmt = IntToFp|~CvtOp ? FmtM : FOpCtrlM[1:0]; /////////////////////////////////////////////////////////////////////////////// // Normalization /////////////////////////////////////////////////////////////////////////////// cvtshiftcalc cvtshiftcalc(.ToInt, .CvtCalcExpM, .CvtResDenormUfM, .XManM, .CvtLzcInM, .XZeroM, .IntToFp, .OutFmt, .CvtResUf, .CvtShiftIn); fmashiftcalc fmashiftcalc(.SumM, .ZExpM, .ProdExpM, .FmaNormCntM, .FmtM, .KillProdM, .ConvNormSumExp, .ZDenormM, .SumZero, .PreResultDenorm, .FmaShiftAmt, .FmaShiftIn); divshiftcalc divshiftcalc(.FmtM, .Quot, .DivCalcExpM, .EarlyTermShiftDiv2M, .DivResDenorm, .DivDenormShift, .DivShiftAmt, .DivShiftIn); always_comb case(PostProcSelM) 2'b10: begin // fma ShiftAmt = {{$clog2(`NORMSHIFTSZ)-$clog2(3*`NF+7){1'b0}}, FmaShiftAmt}; ShiftIn = {FmaShiftIn, {`NORMSHIFTSZ-(3*`NF+9){1'b0}}}; end 2'b00: begin // cvt ShiftAmt = {{$clog2(`NORMSHIFTSZ)-$clog2(`CVTLEN+1){1'b0}}, CvtShiftAmtM}; ShiftIn = {CvtShiftIn, {`NORMSHIFTSZ-`CVTLEN-`NF-1{1'b0}}}; end 2'b01: begin //div ShiftAmt = DivShiftAmt; ShiftIn = DivShiftIn; end default: begin ShiftAmt = {$clog2(`NORMSHIFTSZ){1'bx}}; ShiftIn = {`NORMSHIFTSZ{1'bx}}; end endcase normshift normshift (.ShiftIn, .ShiftAmt, .Shifted); lzacorrection lzacorrection(.FmaOp, .KillProdM, .PreResultDenorm, .ConvNormSumExp, .DivResDenorm, .DivDenormShift, .DivOp, .DivCalcExpM, .CorrDivExp, .SumZero, .Shifted, .SumExp, .CorrShifted); /////////////////////////////////////////////////////////////////////////////// // Rounding /////////////////////////////////////////////////////////////////////////////// // round to nearest even // round to zero // round to -infinity // round to infinity // round to nearest max magnitude round round(.OutFmt, .FrmM, .Sticky, .AddendStickyM, .ZZeroM, .Plus1, .PostProcSelM, .CvtCalcExpM, .CorrDivExp, .InvZM, .RoundSgn, .SumExp, .FmaOp, .CvtOp, .CvtResDenormUfM, .CorrShifted, .ToInt, .CvtResUf, .DivStickyM, .DivNegStickyM, .DivOp, .UfPlus1, .FullResExp, .ResFrac, .ResExp, .Round, .RoundAdd, .UfLSBRes, .RoundExp); /////////////////////////////////////////////////////////////////////////////// // Sign calculation /////////////////////////////////////////////////////////////////////////////// resultsign resultsign(.FrmM, .PSgnM, .ZSgnEffM, .SumExp, .Round, .Sticky, .FmaOp, .ZInfM, .InfIn, .SumZero, .Mult, .RoundSgn, .ResSgn); roundsign roundsign(.PSgnM, .ZSgnEffM, .InvZM, .FmaOp, .DivOp, .CvtOp, .NegSumM, .XSgnM, .YSgnM, .CvtResSgnM, .RoundSgn); /////////////////////////////////////////////////////////////////////////////// // Flags /////////////////////////////////////////////////////////////////////////////// flags flags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .InfIn, .XZeroM, .YZeroM, .XSgnM, .Sqrt, .ToInt, .IntToFp, .Int64, .Signed, .OutFmt, .CvtCalcExpM, .XNaNM, .YNaNM, .NaNIn, .ZSgnEffM, .PSgnM, .Round, .IntInvalid, .DivByZero, .UfLSBRes, .Sticky, .UfPlus1, .CvtOp, .DivOp, .FmaOp, .FullResExp, .Plus1, .RoundExp, .NegResMSBS, .Invalid, .Overflow, .PostProcFlgM); /////////////////////////////////////////////////////////////////////////////// // Select the result /////////////////////////////////////////////////////////////////////////////// negateintres negateintres(.XSgnM, .Shifted, .Signed, .Int64, .Plus1, .NegResMSBS, .NegRes); resultselect resultselect(.XSgnM, .XManM, .YManM, .ZManM, .XZeroM, .IntInvalid, .IntZeroM, .FrmM, .OutFmt, .XNaNM, .YNaNM, .ZNaNM, .CvtResUf, .NaNIn, .IntToFp, .Int64, .Signed, .CvtOp, .FmaOp, .Plus1, .Invalid, .Overflow, .InfIn, .NegRes, .XInfM, .YInfM, .DivOp, .DivByZero, .FullResExp, .CvtCalcExpM, .ResSgn, .ResExp, .ResFrac, .PostProcResM, .FCvtIntResM); endmodule