/////////////////////////////////////////// // srt.sv // // Written: David_Harris@hmc.edu 13 January 2022 // Modified: cturek@hmc.edu June 2022 // // Purpose: Combined Divide and Square Root Floating Point and Integer Unit // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" `define EXTRAFRACBITS ((`NF<(`XLEN)) ? (`XLEN - `NF) : 0) `define EXTRAINTBITS ((`NF<(`XLEN)) ? 0 : (`NF - `XLEN)) module srt ( input logic clk, input logic Start, input logic Stall, // *** multiple pipe stages input logic Flush, // *** multiple pipe stages // Floating Point Inputs // later add exponents, signs, special cases input logic XSign, YSign, input logic [`NE-1:0] XExp, YExp, input logic [`NF-1:0] SrcXFrac, SrcYFrac, input logic [`XLEN-1:0] SrcA, SrcB, input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit input logic W64, // 32-bit ints on XLEN=64 input logic Signed, // Interpret integers as signed 2's complement input logic Int, // Choose integer inputs input logic Sqrt, // perform square root, not divide output logic rsign, output logic [`DIVLEN-1:0] Quot, Rem, QuotOTFC, // *** later handle integers output logic [`NE-1:0] rExp, output logic [3:0] Flags ); logic qp, qz, qm; // quotient is +1, 0, or -1 logic [`NE-1:0] calcExp; logic calcSign; logic [`DIVLEN-1:0] X, Dpreproc; logic [`DIVLEN+3:0] WS, WSA, WSN, WC, WCA, WCN, D, Db, Dsel; logic [`DIVLEN+2:0] rp, rm; logic [$clog2(`XLEN+1)-1:0] intExp; logic intSign; srtpreproc preproc(SrcA, SrcB, SrcXFrac, SrcYFrac, Fmt, W64, Signed, Int, Sqrt, X, Dpreproc, intExp, intSign); // Top Muxes and Registers // When start is asserted, the inputs are loaded into the divider. // Otherwise, the divisor is retained and the partial remainder // is fed back for the next iteration. mux2 #(`DIVLEN+4) wsmux({WSA[`DIVLEN+2:0], 1'b0}, {4'b0001, X}, Start, WSN); flop #(`DIVLEN+4) wsflop(clk, WSN, WS); mux2 #(`DIVLEN+4) wcmux({WCA[`DIVLEN+2:0], 1'b0}, {(`DIVLEN+4){1'b0}}, Start, WCN); flop #(`DIVLEN+4) wcflop(clk, WCN, WC); flopen #(`DIVLEN+4) dflop(clk, Start, {4'b0001, Dpreproc}, D); // Quotient Selection logic // Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm) qsel2 qsel2(WS[`DIVLEN+3:`DIVLEN], WC[`DIVLEN+3:`DIVLEN], qp, qz, qm); // Accumulate quotient digits in a shift register (now done in OTFC) qacc #(`DIVLEN+3) qacc(clk, Start, qp, qz, qm, rp, rm); flopen #(`NE) expflop(clk, Start, calcExp, rExp); flopen #(1) signflop(clk, Start, calcSign, rsign); // Divisor Selection logic inv dinv(D, Db); mux3onehot #(`DIVLEN) divisorsel(Db, {(`DIVLEN+4){1'b0}}, D, qp, qz, qm, Dsel); // Partial Product Generation csa #(`DIVLEN+4) csa(WS, WC, Dsel, qp, WSA, WCA); otfc2 #(`DIVLEN) otfc2(clk, Start, qp, qz, qm, QuotOTFC); expcalc expcalc(.XExp, .YExp, .calcExp); signcalc signcalc(.XSign, .YSign, .calcSign); srtpostproc postproc(rp, rm, Quot); endmodule //////////////// // Submodules // //////////////// /////////////////// // Preprocessing // /////////////////// module srtpreproc ( input logic [`XLEN-1:0] SrcA, SrcB, input logic [`NF-1:0] SrcXFrac, SrcYFrac, input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit input logic W64, // 32-bit ints on XLEN=64 input logic Signed, // Interpret integers as signed 2's complement input logic Int, // Choose integer inputs input logic Sqrt, // perform square root, not divide output logic [`DIVLEN-1:0] X, D, output logic [$clog2(`XLEN+1)-1:0] intExp, // Quotient integer exponent output logic intSign // Quotient integer sign ); logic [$clog2(`XLEN+1)-1:0] zeroCntA, zeroCntB; logic [`XLEN-1:0] PosA, PosB; logic [`DIVLEN-1:0] ExtraA, ExtraB, PreprocA, PreprocB, PreprocX, PreprocY; assign PosA = (Signed & SrcA[`XLEN - 1]) ? -SrcA : SrcA; assign PosB = (Signed & SrcB[`XLEN - 1]) ? -SrcB : SrcB; lzc #(`XLEN) lzcA (PosA, zeroCntA); lzc #(`XLEN) lzcB (PosB, zeroCntB); assign ExtraA = {PosA, {`EXTRAINTBITS{1'b0}}}; assign ExtraB = {PosB, {`EXTRAINTBITS{1'b0}}}; assign PreprocA = ExtraA << zeroCntA; assign PreprocB = ExtraB << zeroCntB; assign PreprocX = {SrcXFrac, {`EXTRAFRACBITS{1'b0}}}; assign PreprocY = {SrcYFrac, {`EXTRAFRACBITS{1'b0}}}; assign X = Int ? PreprocA : PreprocX; assign D = Int ? PreprocB : PreprocY; assign intExp = zeroCntB - zeroCntA + 1; assign intSign = Signed & (SrcA[`XLEN - 1] ^ SrcB[`XLEN - 1]); endmodule ///////////////////////////////// // Quotient Selection, Radix 2 // ///////////////////////////////// module qsel2 ( // *** eventually just change to 4 bits input logic [`DIVLEN+3:`DIVLEN] ps, pc, output logic qp, qz, qm ); logic [`DIVLEN+3:`DIVLEN] p, g; logic magnitude, sign, cout; // The quotient selection logic is presented for simplicity, not // for efficiency. You can probably optimize your logic to // select the proper divisor with less delay. // Quotient equations from EE371 lecture notes 13-20 assign p = ps ^ pc; assign g = ps & pc; assign #1 magnitude = ~(&p[`DIVLEN+2:`DIVLEN]); assign #1 cout = g[`DIVLEN+2] | (p[`DIVLEN+2] & (g[`DIVLEN+1] | p[`DIVLEN+1] & g[`DIVLEN])); assign #1 sign = p[`DIVLEN+3] ^ cout; /* assign #1 magnitude = ~((ps[54]^pc[54]) & (ps[53]^pc[53]) & (ps[52]^pc[52])); assign #1 sign = (ps[55]^pc[55])^ (ps[54] & pc[54] | ((ps[54]^pc[54]) & (ps[53]&pc[53] | ((ps[53]^pc[53]) & (ps[52]&pc[52]))))); */ // Produce quotient = +1, 0, or -1 assign #1 qp = magnitude & ~sign; assign #1 qz = ~magnitude; assign #1 qm = magnitude & sign; endmodule ////////// // qacc // ////////// // To be replaced by OTFC module qacc #(parameter N=68) ( input logic clk, input logic req, input logic qp, qz, qm, output logic [N-1:0] rp, rm ); flopr #(N) rmreg(clk, req, {rm[N-2:0], qm}, rm); flopr #(N) rpreg(clk, req, {rp[N-2:0], qp}, rp); /* always @(posedge clk) begin if (req) begin rp <= #1 0; rm <= #1 0; end else begin rm <= #1 {rm[54:0], qm}; rp <= #1 {rp[54:0], qp}; end end */ endmodule /////////////////////////////////// // On-The-Fly Converter, Radix 2 // /////////////////////////////////// module otfc2 #(parameter N=65) ( input logic clk, input logic Start, input logic qp, qz, qm, output logic [N-1:0] r ); // The on-the-fly converter transfers the quotient // bits to the quotient as they come. // // This code follows the psuedocode presented in the // floating point chapter of the book. Right now, // it is written for Radix-2 division. // // QM is Q-1. It allows us to write negative bits // without using a costly CPA. logic [N+2:0] Q, QM, QNext, QMNext, QMMux; // QR and QMR are the shifted versions of Q and QM. // They are treated as [N-1:r] size signals, and // discard the r most significant bits of Q and QM. logic [N+1:0] QR, QMR; flopr #(N+3) Qreg(clk, Start, QNext, Q); mux2 #(`DIVLEN+3) QMmux(QMNext, {`DIVLEN+3{1'b1}}, Start, QMMux); flop #(`DIVLEN+3) QMreg(clk, QMMux, QM); always_comb begin QR = Q[N+1:0]; QMR = QM[N+1:0]; // Shift Q and QM if (qp) begin QNext = {QR, 1'b1}; QMNext = {QR, 1'b0}; end else if (qz) begin QNext = {QR, 1'b0}; QMNext = {QMR, 1'b1}; end else begin // If qp and qz are not true, then qm is QNext = {QMR, 1'b1}; QMNext = {QMR, 1'b0}; end end assign r = Q[N+2] ? Q[N+1:2] : Q[N:1]; endmodule ///////// // inv // ///////// module inv(input logic [`DIVLEN+3:0] in, output logic [`DIVLEN+3:0] out); assign #1 out = ~in; endmodule ////////// // mux3 // ////////// module mux3onehot #(parameter N=65) ( input logic [N+3:0] in0, in1, in2, input logic sel0, sel1, sel2, output logic [N+3:0] out ); // lazy inspection of the selects // really we should make sure selects are mutually exclusive assign #1 out = sel0 ? in0 : (sel1 ? in1 : in2); endmodule ///////// // csa // ///////// module csa #(parameter N=69) ( input logic [N-1:0] in1, in2, in3, input logic cin, output logic [N-1:0] out1, out2 ); // This block adds in1, in2, in3, and cin to produce // a result out1 / out2 in carry-save redundant form. // cin is just added to the least significant bit and // is required to handle adding a negative divisor. // Fortunately, the carry (out2) is shifted left by one // bit, leaving room in the least significant bit to // insert cin. assign #1 out1 = in1 ^ in2 ^ in3; assign #1 out2 = {in1[N-2:0] & (in2[N-2:0] | in3[N-2:0]) | (in2[N-2:0] & in3[N-2:0]), cin}; endmodule ////////////// // expcalc // ////////////// module expcalc( input logic [`NE-1:0] XExp, YExp, output logic [`NE-1:0] calcExp ); assign calcExp = XExp - YExp + (`NE)'(`BIAS); endmodule ////////////// // signcalc // ////////////// module signcalc( input logic XSign, YSign, output logic calcSign ); assign calcSign = XSign ^ YSign; endmodule //////////////////// // Postprocessing // //////////////////// module srtpostproc ( input [`DIVLEN+2:0] rp, rm, output [`DIVLEN-1:0] Quot ); //assign Quot = rp - rm; finaladd #(`DIVLEN+3) finaladd(rp, rm, Quot); endmodule ////////////// // finaladd // ////////////// module finaladd #(parameter N=68) ( input logic [N-1:0] rp, rm, output logic [N-4:0] r ); logic [N-1:0] diff; // this magic block performs the final addition for you // to convert the positive and negative quotient digits // into a normalized mantissa. It returns the 52 bit // mantissa after shifting to guarantee a leading 1. // You can assume this block operates in one cycle // and do not need to budget it in your area and power // calculations. // Since no rounding is performed, the result may be too // small by one unit in the least significant place (ulp). // The checker ignores such an error. assign #1 diff = rp - rm; assign #1 r = diff[N-1] ? diff[N-2:2] : diff[N-3:1]; endmodule