/////////////////////////////////////////// // dtim.sv // // Written: David_Harris@hmc.edu 9 January 2021 // Modified: // // Purpose: Data tightly integrated memory // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT // OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////// `include "wally-config.vh" module dtim ( input logic HCLK, HRESETn, input logic [1:0] MemRWtim, input logic [18:0] HADDR, input logic [`XLEN-1:0] HWDATA, input logic HSELTim, output logic [`XLEN-1:0] HREADTim, output logic HRESPTim, HREADYTim ); logic [`XLEN-1:0] RAM[0:65535]; // logic [`XLEN-1:0] write; logic [15:0] entry; logic memread, memwrite; assign memread = MemRWtim[1]; assign memwrite = MemRWtim[0]; assign HRESPTim = 0; // OK assign HREADYTim = 1; // Respond immediately; *** extend this // word aligned reads generate if (`XLEN==64) assign #2 entry = HADDR[18:3]; else assign #2 entry = HADDR[17:2]; endgenerate assign HREADTim = RAM[entry]; // write each byte based on the byte mask // UInstantiate a byte-writable memory here if possible // and drop tihs masking logic. Otherwise, use the masking // from dmem /*generate if (`XLEN==64) begin always_comb begin write=HREADTim; if (ByteMaskM[0]) write[7:0] = HWDATA[7:0]; if (ByteMaskM[1]) write[15:8] = HWDATA[15:8]; if (ByteMaskM[2]) write[23:16] = HWDATA[23:16]; if (ByteMaskM[3]) write[31:24] = HWDATA[31:24]; if (ByteMaskM[4]) write[39:32] = HWDATA[39:32]; if (ByteMaskM[5]) write[47:40] = HWDATA[47:40]; if (ByteMaskM[6]) write[55:48] = HWDATA[55:48]; if (ByteMaskM[7]) write[63:56] = HWDATA[63:56]; end always_ff @(posedge clk) if (memwrite) RAM[HADDR[18:3]] <= write; end else begin // 32-bit always_comb begin write=HREADTim; if (ByteMaskM[0]) write[7:0] = HWDATA[7:0]; if (ByteMaskM[1]) write[15:8] = HWDATA[15:8]; if (ByteMaskM[2]) write[23:16] = HWDATA[23:16]; if (ByteMaskM[3]) write[31:24] = HWDATA[31:24]; end always_ff @(posedge clk) if (memwrite) RAM[HADDR[17:2]] <= write; end endgenerate */ generate if (`XLEN == 64) always_ff @(posedge HCLK) begin if (memwrite) RAM[HADDR[17:3]] <= HWDATA; // HREADTim <= RAM[HADDR[17:3]]; end else always_ff @(posedge HCLK) begin if (memwrite) RAM[HADDR[17:2]] <= HWDATA; // HREADTim <= RAM[HADDR[17:2]]; end endgenerate endmodule