/////////////////////////////////////////// // datapath.sv // // Written: sarahleilani@gmail.com and David_Harris@hmc.edu 9 January 2021 // Modified: // // Purpose: Wally Integer Datapath // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module datapath ( input logic clk, reset, // Decode stage signals input logic [2:0] ImmSrcD, input logic [31:0] InstrD, input logic [2:0] Funct3E, // Execute stage signals input logic StallE, FlushE, input logic [1:0] ForwardAE, ForwardBE, input logic [2:0] ALUControlE, input logic ALUSrcAE, ALUSrcBE, input logic ALUResultSrcE, input logic JumpE, input logic BranchSignedE, input logic [`XLEN-1:0] PCE, input logic [`XLEN-1:0] PCLinkE, output logic [1:0] FlagsE, output logic [`XLEN-1:0] IEUAdrE, output logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B // Memory stage signals input logic StallM, FlushM, input logic FWriteIntM, FCvtIntW, input logic [`XLEN-1:0] FIntResM, output logic [`XLEN-1:0] SrcAM, output logic [`XLEN-1:0] WriteDataM, // Writeback stage signals input logic StallW, FlushW, (* mark_debug = "true" *) input logic RegWriteW, IntDivW, input logic SquashSCW, input logic [2:0] ResultSrcW, input logic [`XLEN-1:0] FCvtIntResW, input logic [`XLEN-1:0] ReadDataW, input logic [`XLEN-1:0] CSRReadValW, MDUResultW, input logic [`XLEN-1:0] FIntDivResultW, // Hazard Unit signals output logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E, output logic [4:0] RdE, RdM, RdW ); // Fetch stage signals // Decode stage signals logic [`XLEN-1:0] R1D, R2D; logic [`XLEN-1:0] ExtImmD; logic [4:0] RdD; // Execute stage signals logic [`XLEN-1:0] R1E, R2E; logic [`XLEN-1:0] ExtImmE; logic [`XLEN-1:0] SrcAE, SrcBE; logic [`XLEN-1:0] ALUResultE, AltResultE, IEUResultE; // Memory stage signals logic [`XLEN-1:0] IEUResultM; logic [`XLEN-1:0] IFResultM; // Writeback stage signals logic [`XLEN-1:0] SCResultW; logic [`XLEN-1:0] ResultW; logic [`XLEN-1:0] IFResultW, IFCvtResultW, MulDivResultW; // Decode stage assign Rs1D = InstrD[19:15]; assign Rs2D = InstrD[24:20]; assign RdD = InstrD[11:7]; regfile regf(clk, reset, RegWriteW, Rs1D, Rs2D, RdW, ResultW, R1D, R2D); extend ext(.InstrD(InstrD[31:7]), .ImmSrcD, .ExtImmD); // Execute stage pipeline register and logic flopenrc #(`XLEN) RD1EReg(clk, reset, FlushE, ~StallE, R1D, R1E); flopenrc #(`XLEN) RD2EReg(clk, reset, FlushE, ~StallE, R2D, R2E); flopenrc #(`XLEN) ExtImmEReg(clk, reset, FlushE, ~StallE, ExtImmD, ExtImmE); flopenrc #(5) Rs1EReg(clk, reset, FlushE, ~StallE, Rs1D, Rs1E); flopenrc #(5) Rs2EReg(clk, reset, FlushE, ~StallE, Rs2D, Rs2E); flopenrc #(5) RdEReg(clk, reset, FlushE, ~StallE, RdD, RdE); mux3 #(`XLEN) faemux(R1E, ResultW, IFResultM, ForwardAE, ForwardedSrcAE); mux3 #(`XLEN) fbemux(R2E, ResultW, IFResultM, ForwardBE, ForwardedSrcBE); comparator_dc_flip #(`XLEN) comp(ForwardedSrcAE, ForwardedSrcBE, BranchSignedE, FlagsE); mux2 #(`XLEN) srcamux(ForwardedSrcAE, PCE, ALUSrcAE, SrcAE); mux2 #(`XLEN) srcbmux(ForwardedSrcBE, ExtImmE, ALUSrcBE, SrcBE); alu #(`XLEN) alu(SrcAE, SrcBE, ALUControlE, Funct3E, ALUResultE, IEUAdrE); mux2 #(`XLEN) altresultmux(ExtImmE, PCLinkE, JumpE, AltResultE); mux2 #(`XLEN) ieuresultmux(ALUResultE, AltResultE, ALUResultSrcE, IEUResultE); // Memory stage pipeline register flopenrc #(`XLEN) SrcAMReg(clk, reset, FlushM, ~StallM, SrcAE, SrcAM); flopenrc #(`XLEN) IEUResultMReg(clk, reset, FlushM, ~StallM, IEUResultE, IEUResultM); flopenrc #(5) RdMReg(clk, reset, FlushM, ~StallM, RdE, RdM); flopenrc #(`XLEN) WriteDataMReg(clk, reset, FlushM, ~StallM, ForwardedSrcBE, WriteDataM); // Writeback stage pipeline register and logic flopenrc #(`XLEN) IFResultWReg(clk, reset, FlushW, ~StallW, IFResultM, IFResultW); flopenrc #(5) RdWReg(clk, reset, FlushW, ~StallW, RdM, RdW); // floating point inputs: FIntResM comes from fclass, fcmp, fmv; FCvtIntResW comes from fcvt if (`F_SUPPORTED) begin:fpmux mux2 #(`XLEN) resultmuxM(IEUResultM, FIntResM, FWriteIntM, IFResultM); mux2 #(`XLEN) cvtresultmuxW(IFResultW, FCvtIntResW, FCvtIntW, IFCvtResultW); if (`IDIV_ON_FPU) begin mux2 #(`XLEN) divresultmuxW(MDUResultW, FIntDivResultW, IntDivW, MulDivResultW); end else begin assign MulDivResultW = MDUResultW; end end else begin:fpmux assign IFResultM = IEUResultM; assign IFCvtResultW = IFResultW; assign MulDivResultW = MDUResultW; end mux5 #(`XLEN) resultmuxW(IFCvtResultW, ReadDataW, CSRReadValW, MulDivResultW, SCResultW, ResultSrcW, ResultW); // handle Store Conditional result if atomic extension supported if (`A_SUPPORTED) assign SCResultW = {{(`XLEN-1){1'b0}}, SquashSCW}; else assign SCResultW = 0; endmodule