/////////////////////////////////////////// // fsgninj.sv // // Written: me@KatherineParry.com // Modified: 6/23/2021 // // Purpose: FPU Sign Injection instructions // // Documentation: RISC-V System on Chip Design Chapter 13 // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fsgninj ( input logic Xs, Ys, // X and Y sign bits input logic [`FLEN-1:0] X, // X input logic [`FMTBITS-1:0] Fmt, // format input logic [1:0] OpCtrl, // operation control output logic [`FLEN-1:0] SgnRes // result ); logic ResSgn; // result sign // OpCtrl: // 00 - fsgnj - directly copy over sign value of Y // 01 - fsgnjn - negate sign value of Y // 10 - fsgnjx - XOR sign values of X and Y // calculate the result's sign assign ResSgn = (OpCtrl[1] ? Xs : OpCtrl[0]) ^ Ys; // format final result based on precision // - uses NaN-blocking format // - if there are any unused bits the most significant bits are filled with 1s if (`FPSIZES == 1) assign SgnRes = {ResSgn, X[`FLEN-2:0]}; else if (`FPSIZES == 2) assign SgnRes = {~Fmt|ResSgn, X[`FLEN-2:`LEN1], Fmt ? X[`LEN1-1] : ResSgn, X[`LEN1-2:0]}; else if (`FPSIZES == 3) begin logic [2:0] SgnBits; always_comb case (Fmt) `FMT: SgnBits = {ResSgn, X[`LEN1-1], X[`LEN2-1]}; `FMT1: SgnBits = {1'b1, ResSgn, X[`LEN2-1]}; `FMT2: SgnBits = {2'b11, ResSgn}; default: SgnBits = {3{1'bx}}; endcase assign SgnRes = {SgnBits[2], X[`FLEN-2:`LEN1], SgnBits[1], X[`LEN1-2:`LEN2], SgnBits[0], X[`LEN2-2:0]}; end else if (`FPSIZES == 4) begin logic [3:0] SgnBits; always_comb case (Fmt) `Q_FMT: SgnBits = {ResSgn, X[`D_LEN-1], X[`S_LEN-1], X[`H_LEN-1]}; `D_FMT: SgnBits = {1'b1, ResSgn, X[`S_LEN-1], X[`H_LEN-1]}; `S_FMT: SgnBits = {2'b11, ResSgn, X[`H_LEN-1]}; `H_FMT: SgnBits = {3'b111, ResSgn}; endcase assign SgnRes = {SgnBits[3], X[`Q_LEN-2:`D_LEN], SgnBits[2], X[`D_LEN-2:`S_LEN], SgnBits[1], X[`S_LEN-2:`H_LEN], SgnBits[0], X[`H_LEN-2:0]}; end endmodule