#!/usr/bin/python3 # Madeleine Masser-Frye mmasserfrye@hmc.edu 5/22 from distutils.log import error from operator import index from statistics import median import subprocess import statistics import csv import re import matplotlib.pyplot as plt import matplotlib.lines as lines import numpy as np def getData(tech, mod=None, width=None): ''' returns a list of lists each list contains results of one synthesis that matches the input specs ''' specStr = '' if mod != None: specStr = mod if width != None: specStr += ('_'+str(width)) specStr += '*{}*'.format(tech) bashCommand = "grep 'Critical Path Length' runs/ppa_{}/reports/*qor*".format(specStr) outputCPL = subprocess.check_output(['bash','-c', bashCommand]) linesCPL = outputCPL.decode("utf-8").split('\n')[:-1] bashCommand = "grep 'Design Area' runs/ppa_{}/reports/*qor*".format(specStr) outputDA = subprocess.check_output(['bash','-c', bashCommand]) linesDA = outputDA.decode("utf-8").split('\n')[:-1] bashCommand = "grep '100' runs/ppa_{}/reports/*power*".format(specStr) outputP = subprocess.check_output(['bash','-c', bashCommand]) linesP = outputP.decode("utf-8").split('\n')[:-1] cpl = re.compile('\d{1}\.\d{6}') f = re.compile('_\d*_MHz') wm = re.compile('ppa_\w*_\d*_qor') da = re.compile('\d*\.\d{6}') p = re.compile('\d+\.\d+[e-]*\d+') allSynths = [] for i in range(len(linesCPL)): line = linesCPL[i] mwm = wm.findall(line)[0][4:-4].split('_') freq = int(f.findall(line)[0][1:-4]) delay = float(cpl.findall(line)[0]) area = float(da.findall(linesDA[i])[0]) mod = mwm[0] width = int(mwm[1]) power = p.findall(linesP[i]) lpower = float(power[2]) denergy = float(power[1])*delay oneSynth = [mod, width, freq, delay, area, lpower, denergy] allSynths += [oneSynth] return allSynths def getVals(tech, module, var, freq=None): ''' for a specified tech, module, and variable/metric returns a list of widths and the corresponding values for that metric with the appropriate units works at a specified target frequency or if none is given, uses the synthesis with the min delay for each width ''' allSynths = getData(tech, mod=module) if (var == 'delay'): ind = 3 units = " (ns)" elif (var == 'area'): ind = 4 units = " (sq microns)" scale = 2 elif (var == 'lpower'): ind = 5 units = " (nW)" elif (var == 'denergy'): ind = 6 units = " (pJ)" else: error widths = [] metric = [] if (freq != None): for oneSynth in allSynths: if (oneSynth[2] == freq): widths += [oneSynth[1]] metric += [oneSynth[ind]] else: widths = [8, 16, 32, 64, 128] for w in widths: m = 10000 # large number to start for oneSynth in allSynths: if (oneSynth[1] == w): if (oneSynth[3] < m): m = oneSynth[3] met = oneSynth[ind] metric += [met] if ('flop' in module) & (var == 'area'): metric = [m/2 for m in metric] # since two flops in each module return widths, metric, units def writeCSV(tech): ''' writes a CSV with one line for every available synthesis for a specified tech each line contains the module, width, target freq, and resulting metrics ''' allSynths = getData(tech) file = open("ppaData.csv", "w") writer = csv.writer(file) writer.writerow(['Module', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (mJ)']) for one in allSynths: writer.writerow(one) file.close() def genLegend(fits, coefs, r2, tech): ''' generates a list of two legend elements labels line with fit equation and dots with tech and r squared of the fit ''' coefsr = [str(round(c, 3)) for c in coefs] eq = '' ind = 0 if 'c' in fits: eq += coefsr[ind] ind += 1 if 'l' in fits: eq += " + " + coefsr[ind] + "*N" ind += 1 if 's' in fits: eq += " + " + coefsr[ind] + "*N^2" ind += 1 if 'g' in fits: eq += " + " + coefsr[ind] + "*log2(N)" ind += 1 if 'n' in fits: eq += " + " + coefsr[ind] + "*Nlog2(N)" ind += 1 c = 'blue' if (tech == 'sky90') else 'green' legend_elements = [lines.Line2D([0], [0], color=c, label=eq), lines.Line2D([0], [0], color=c, ls='', marker='o', label=tech +' $R^2$='+ str(round(r2, 4)))] return legend_elements def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn'): ''' module: string module name freq: int freq (MHz) var: string delay, area, lpower, or denergy fits: constant, linear, square, log2, Nlog2 plots given variable vs width for all matching syntheses with regression ''' if ax is None: singlePlot = True ax = plt.gca() else: singlePlot = False fullLeg = [] for tech in ['sky90', 'tsmc28']: c = 'blue' if (tech == 'sky90') else 'green' widths, metric, units = getVals(tech, module, var, freq=freq) xp, pred, leg = regress(widths, metric, tech, fits) fullLeg += leg ax.scatter(widths, metric, color=c) ax.plot(xp, pred, color=c) ax.legend(handles=fullLeg) ax.set_xticks(widths) ax.set_xlabel("Width (bits)") ax.set_ylabel(str.title(var) + units) if singlePlot: ax.set_title(module + " (target " + str(freq) + "MHz)") plt.show() def regress(widths, var, tech, fits='clsgn'): ''' fits a curve to the given points returns lists of x and y values to plot that curve and legend elements with the equation ''' funcArr = genFuncs(fits) mat = [] for w in widths: row = [] for func in funcArr: row += [func(w)] mat += [row] y = np.array(var, dtype=np.float) coefsResid = np.linalg.lstsq(mat, y, rcond=None) coefs = coefsResid[0] try: resid = coefsResid[1][0] except: resid = 0 r2 = 1 - resid / (y.size * y.var()) xp = np.linspace(8, 140, 200) pred = [] for x in xp: n = [func(x) for func in funcArr] pred += [sum(np.multiply(coefs, n))] leg = genLegend(fits, coefs, r2, tech) return xp, pred, leg def makeCoefTable(tech): ''' writes CSV with each line containing the coefficients for a regression fit to a particular combination of module, metric, and target frequency ''' file = open("ppaFitting.csv", "w") writer = csv.writer(file) writer.writerow(['Module', 'Metric', 'Freq', '1', 'N', 'N^2', 'log2(N)', 'Nlog2(N)', 'R^2']) for mod in ['add', 'mult', 'comparator', 'shifter']: for comb in [['delay', 5000], ['area', 5000], ['area', 10]]: var = comb[0] freq = comb[1] widths, metric, units = getVals(tech, mod, freq, var) coefs, r2, funcArr = regress(widths, metric) row = [mod] + comb + np.ndarray.tolist(coefs) + [r2] writer.writerow(row) file.close() def genFuncs(fits='clsgn'): ''' helper function for regress() returns array of functions with one for each term desired in the regression fit ''' funcArr = [] if 'c' in fits: funcArr += [lambda x: 1] if 'l' in fits: funcArr += [lambda x: x] if 's' in fits: funcArr += [lambda x: x**2] if 'g' in fits: funcArr += [lambda x: np.log2(x)] if 'n' in fits: funcArr += [lambda x: x*np.log2(x)] return funcArr def noOutliers(freqs, delays, areas): ''' returns a pared down list of freqs, delays, and areas cuts out any syntheses in which target freq isn't within 75% of the min delay target to focus on interesting area helper function to freqPlot() ''' f=[] d=[] a=[] try: ind = delays.index(min(delays)) med = freqs[ind] for i in range(len(freqs)): norm = freqs[i]/med if (norm > 0.25) & (norm<1.75): f += [freqs[i]] d += [delays[i]] a += [areas[i]] except: pass return f, d, a def freqPlot(tech, mod, width): ''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width ''' allSynths = getData(tech, mod=mod, width=width) freqsL, delaysL, areasL = ([[], []] for i in range(3)) for oneSynth in allSynths: if (mod == oneSynth[0]) & (width == oneSynth[1]): ind = (1000/oneSynth[3] < oneSynth[2]) # when delay is within target clock period freqsL[ind] += [oneSynth[2]] delaysL[ind] += [oneSynth[3]] areasL[ind] += [oneSynth[4]] f, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, 1, sharex=True) for ind in [0,1]: areas = areasL[ind] delays = delaysL[ind] freqs = freqsL[ind] if ('flop' in mod): areas = [m/2 for m in areas] # since two flops in each module freqs, delays, areas = noOutliers(freqs, delays, areas) c = 'blue' if ind else 'green' adprod = adprodpow(areas, delays, 2) adpow = adprodpow(areas, delays, 3) adpow2 = adprodpow(areas, delays, 4) ax1.scatter(freqs, delays, color=c) ax2.scatter(freqs, areas, color=c) ax3.scatter(freqs, adprod, color=c) ax4.scatter(freqs, adpow, color=c) ax5.scatter(freqs, adpow2, color=c) legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'), lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')] ax1.legend(handles=legend_elements) ax4.set_xlabel("Target Freq (MHz)") ax1.set_ylabel('Delay (ns)') ax2.set_ylabel('Area (sq microns)') ax3.set_ylabel('Area * Delay') ax4.set_ylabel('Area * $Delay^2$') ax1.set_title(mod + '_' + str(width)) plt.show() def adprodpow(areas, delays, pow): ''' for each value in [areas] returns area*delay^pow helper function for freqPlot''' result = [] for i in range(len(areas)): result += [(areas[i])*(delays[i])**pow] return result def plotPPA(mod, freq=None): ''' for the module specified, plots width vs delay, area, leakage power, and dynamic energy with fits if no freq specified, uses the synthesis with min delay for each width overlays data from both techs ''' fig, axs = plt.subplots(2, 2) oneMetricPlot(mod, 'delay', ax=axs[0,0], fits='clg', freq=freq) oneMetricPlot(mod, 'area', ax=axs[0,1], fits='s', freq=freq) oneMetricPlot(mod, 'lpower', ax=axs[1,0], fits='c', freq=freq) oneMetricPlot(mod, 'denergy', ax=axs[1,1], fits='s', freq=freq) titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (min delay)" plt.suptitle(mod + titleStr) plt.show() # writeCSV() # look at comparaotro 32 # for x in ['add', 'mult', 'comparator', 'alu', 'csa']: # for y in [8, 16, 32, 64, 128]: # freqPlot('sky90', x, y) freqPlot('sky90', 'mult', 32)