/////////////////////////////////////////// // srt.sv // // Written: David_Harris@hmc.edu 13 January 2022 // Modified: cturek@hmc.edu July 2022 // // Purpose: Combined Divide and Square Root Floating Point and Integer Unit // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module srt ( input logic clk, input logic Start, input logic Stall, // *** multiple pipe stages input logic Flush, // *** multiple pipe stages // Floating Point input logic XSign, YSign, input logic [`NE-1:0] XExp, YExp, input logic [`NF-1:0] SrcXFrac, SrcYFrac, // Integer input logic [`XLEN-1:0] SrcA, SrcB, // Customization input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit input logic W64, // 32-bit ints on XLEN=64 // Selection input logic Signed, // Interpret integers as signed 2's complement input logic Int, // Choose integer inputs input logic Mod, // perform remainder calculation (modulo) instead of divide input logic Sqrt, // perform square root, not divide output logic rsign, done, output logic [`DIVLEN-1:0] Result, output logic [`NE-1:0] rExp, output logic [3:0] Flags ); logic qp, qz, qn; // result bits are +1, 0, or -1 logic [`NE-1:0] calcExp; logic calcSign; logic [`DIVLEN+3:0] X, Dpreproc, C, F, S, SM, AddIn; logic [`DIVLEN+3:0] WS, WSA, WSN, WC, WCA, WCN, D, Db, Dsel; logic [$clog2(`XLEN+1)-1:0] zeroCntD, intExp, dur, calcDur; logic intSign; logic cin; srtpreproc preproc(SrcA, SrcB, SrcXFrac, SrcYFrac, XExp, Fmt, W64, Signed, Int, Mod, Sqrt, X, Dpreproc, zeroCntD, intExp, calcDur, intSign); // Top Muxes and Registers // When start is asserted, the inputs are loaded into the divider. // Otherwise, the divisor is retained and the partial remainder // is fed back for the next iteration. mux2 #(`DIVLEN+4) wsmux({WSA[`DIVLEN+2:0], 1'b0}, X, Start, WSN); flop #(`DIVLEN+4) wsflop(clk, WSN, WS); mux2 #(`DIVLEN+4) wcmux({WCA[`DIVLEN+2:0], 1'b0}, {(`DIVLEN+4){1'b0}}, Start, WCN); flop #(`DIVLEN+4) wcflop(clk, WCN, WC); flopen #(`DIVLEN+4) dflop(clk, Start, Dpreproc, D); // Quotient Selection logic // Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm) qsel2 qsel2(WS[`DIVLEN+3:`DIVLEN], WC[`DIVLEN+3:`DIVLEN], Sqrt, qp, qz, qn); flopen #(`NE) expflop(clk, Start, calcExp, rExp); flopen #(1) signflop(clk, Start, calcSign, rsign); flopen #(7) durflop(clk, Start, calcDur, dur); srtcounter divcounter(clk, Start, dur, done); // Divisor Selection logic assign Db = ~D; mux3onehot #(`DIVLEN) divisorsel(Db, {(`DIVLEN+4){1'b0}}, D, qp, qz, qn, Dsel); // If only implementing division, use divide otfc // otfc2 #(`DIVLEN) otfc2(clk, Start, qp, qz, qn, Quot); // otherwise use sotfc creg sotfcC(clk, Start, Sqrt, C); sotfc2 sotfc2(clk, Start, qp, qn, Sqrt, C, S, SM); fsel2 fsel(qp, qn, C, S, SM, F); // Adder input selection assign AddIn = Sqrt ? F : Dsel; // Partial Product Generation assign cin = ~Sqrt & qp; csa #(`DIVLEN+4) csa(WS, WC, AddIn, cin, WSA, WCA); expcalc expcalc(.XExp, .YExp, .calcExp, .Sqrt); srtpostproc postproc(.WS, .WC, .X, .D, .S, .SM, .dur, .zeroCntD, .XSign, .YSign, .Signed, .Int, .Mod, .Result, .calcSign); endmodule //////////////// // Submodules // //////////////// /////////////////// // Preprocessing // /////////////////// module srtpreproc ( input logic [`XLEN-1:0] SrcA, SrcB, input logic [`NF-1:0] SrcXFrac, SrcYFrac, input logic [`NE-1:0] XExp, input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit input logic W64, // 32-bit ints on XLEN=64 input logic Signed, // Interpret integers as signed 2's complement input logic Int, // Choose integer inputs input logic Mod, // perform remainder calculation (modulo) instead of divide input logic Sqrt, // perform square root, not divide output logic [`DIVLEN+3:0] X, D, output logic [$clog2(`XLEN+1)-1:0] zeroCntB, intExp, dur, // Quotient integer exponent output logic intSign // Quotient integer sign ); logic [$clog2(`XLEN+1)-1:0] zeroCntA; logic [`XLEN-1:0] PosA, PosB; logic [`DIVLEN-1:0] ExtraA, ExtraB, PreprocA, PreprocB, PreprocX, PreprocY, DivX; logic [`NF+4:0] SqrtX; // Generate positive integer inputs if they are signed assign PosA = (Signed & SrcA[`XLEN - 1]) ? -SrcA : SrcA; assign PosB = (Signed & SrcB[`XLEN - 1]) ? -SrcB : SrcB; // Calculate leading zeros of integer inputs lzc #(`XLEN) lzcA (PosA, zeroCntA); lzc #(`XLEN) lzcB (PosB, zeroCntB); // Make integers have DIVLEN bits assign ExtraA = {PosA, {`EXTRAINTBITS{1'b0}}}; assign ExtraB = {PosB, {`EXTRAINTBITS{1'b0}}}; // Shift integers to have leading ones assign PreprocA = ExtraA << (zeroCntA + 1); assign PreprocB = ExtraB << (zeroCntB + 1); // Make mantissas have DIVLEN bits assign PreprocX = {SrcXFrac, {`EXTRAFRACBITS{1'b0}}}; assign PreprocY = {SrcYFrac, {`EXTRAFRACBITS{1'b0}}}; // Selecting correct divider inputs assign DivX = Int ? PreprocA : PreprocX; assign SqrtX = XExp[0] ? {5'b11101, SrcXFrac} : {4'b1111, SrcXFrac, 1'b0}; assign X = Sqrt ? {SqrtX, {(`EXTRAFRACBITS-1){1'b0}}} : {4'b0001, DivX}; assign D = {4'b0001, Int ? PreprocB : PreprocY}; // Integer exponent and sign calculations assign intExp = zeroCntB - zeroCntA + (PreprocA >= PreprocB); assign intSign = Signed & (SrcA[`XLEN - 1] ^ SrcB[`XLEN - 1]); // Number of cycles of divider assign dur = Int ? (intExp & {7{~intExp[6]}}) : (7)'(`DIVLEN); endmodule ///////////////////////////////// // Quotient Selection, Radix 2 // ///////////////////////////////// module qsel2 ( input logic [`DIVLEN+3:`DIVLEN] ps, pc, input logic Sqrt, output logic qp, qz, qn ); logic [`DIVLEN+3:`DIVLEN] p, g; logic magnitude, sign, cout; // The quotient selection logic is presented for simplicity, not // for efficiency. You can probably optimize your logic to // select the proper divisor with less delay. // Quotient equations from EE371 lecture notes 13-20 assign p = ps ^ pc; assign g = ps & pc; assign #1 magnitude = ~(&p[`DIVLEN+2:`DIVLEN]); assign #1 cout = g[`DIVLEN+2] | (p[`DIVLEN+2] & (g[`DIVLEN+1] | p[`DIVLEN+1] & (g[`DIVLEN]))); assign #1 sign = p[`DIVLEN+3] ^ cout; /* assign #1 magnitude = ~((ps[54]^pc[54]) & (ps[53]^pc[53]) & (ps[52]^pc[52])); assign #1 sign = (ps[55]^pc[55])^ (ps[54] & pc[54] | ((ps[54]^pc[54]) & (ps[53]&pc[53] | ((ps[53]^pc[53]) & (ps[52]&pc[52]))))); */ // Produce quotient = +1, 0, or -1 assign #1 qp = magnitude & ~sign; assign #1 qz = ~magnitude; assign #1 qn = magnitude & sign; endmodule //////////////////////////////////// // Adder Input Selection, Radix 2 // //////////////////////////////////// module fsel2 ( input logic sp, sn, input logic [`DIVLEN+3:0] C, S, SM, output logic [`DIVLEN+3:0] F ); logic [`DIVLEN+3:0] FP, FN, FZ; // Generate for both positive and negative bits assign FP = ~(S << 1) & C; assign FN = (SM << 1) | (C & (~C << 2)); assign FZ = '0; // Choose which adder input will be used always_comb if (sp) F = FP; else if (sn) F = FN; else F = FZ; // assign F = sp ? FP : (sn ? FN : FZ); endmodule /////////////////////////////////// // On-The-Fly Converter, Radix 2 // /////////////////////////////////// module otfc2 #(parameter N=66) ( input logic clk, input logic Start, input logic qp, qz, qn, output logic [N-3:0] Result ); // The on-the-fly converter transfers the quotient // bits to the quotient as they come. // Use this otfc for division only. logic [N+2:0] Q, QM, QNext, QMNext, QMMux; logic [N+1:0] QR, QMR; flopr #(N+3) Qreg(clk, Start, QNext, Q); mux2 #(`DIVLEN+3) Qmux(QMNext, {(`DIVLEN+3){1'b1}}, Start, QMMux); flop #(`DIVLEN+3) QMreg(clk, QMMux, QM); always_comb begin QR = Q[N+1:0]; QMR = QM[N+1:0]; // Shift Q and QM if (qp) begin QNext = {QR, 1'b1}; QMNext = {QR, 1'b0}; end else if (qz) begin QNext = {QR, 1'b0}; QMNext = {QMR, 1'b1}; end else begin // If qp and qz are not true, then qn is QNext = {QMR, 1'b1}; QMNext = {QMR, 1'b0}; end end assign Result = Q[N] ? Q[N-1:2] : Q[N-2:1]; endmodule /////////////////////////////// // Square Root OTFC, Radix 2 // /////////////////////////////// module sotfc2( input logic clk, input logic Start, input logic sp, sn, input logic Sqrt, input logic [`DIVLEN+3:0] C, output logic [`DIVLEN+3:0] S, SM ); // The on-the-fly converter transfers the square root // bits to the quotient as they come. // Use this otfc for division and square root. logic [`DIVLEN+3:0] SNext, SMNext, SMux; flopr #(`DIVLEN+4) SMreg(clk, Start, SMNext, SM); mux2 #(`DIVLEN+4) Smux(SNext, {3'b000, Sqrt, {(`DIVLEN){1'b0}}}, Start, SMux); flop #(`DIVLEN+4) Sreg(clk, SMux, S); always_comb begin if (sp) begin SNext = S | (C & ~(C << 1)); SMNext = S; end else if (sn) begin SNext = SM | (C & ~(C << 1)); SMNext = SM; end else begin // If sp and sn are not true, then sz is SNext = S; SMNext = SM | (C & ~(C << 1)); end end endmodule ////////////////////////// // C Register for SOTFC // ////////////////////////// module creg(input logic clk, input logic Start, input logic Sqrt, output logic [`DIVLEN+3:0] C ); logic [`DIVLEN+3:0] CMux; mux2 #(`DIVLEN+4) Cmux({1'b1, C[`DIVLEN+3:1]}, {4'b1111, Sqrt, {(`DIVLEN-1){1'b0}}}, Start, CMux); flop #(`DIVLEN+4) cflop(clk, CMux, C); endmodule ///////////// // counter // ///////////// module srtcounter(input logic clk, input logic req, input logic [$clog2(`XLEN+1)-1:0] dur, output logic done ); logic [$clog2(`XLEN+1)-1:0] count; // This block of control logic sequences the divider // through its iterations. You may modify it if you // build a divider which completes in fewer iterations. // You are not responsible for the (trivial) circuit // design of the block. always @(posedge clk) begin if (count == dur) done <= #1 1; else if (done | req) done <= #1 0; if (req) count <= #1 0; else count <= #1 count+1; end endmodule ////////// // mux3 // ////////// module mux3onehot #(parameter N=65) ( input logic [N+3:0] in0, in1, in2, input logic sel0, sel1, sel2, output logic [N+3:0] out ); // lazy inspection of the selects // really we should make sure selects are mutually exclusive assign #1 out = sel0 ? in0 : (sel1 ? in1 : in2); endmodule ///////// // csa // ///////// module csa #(parameter N=69) ( input logic [N-1:0] in1, in2, in3, input logic cin, output logic [N-1:0] out1, out2 ); // This block adds in1, in2, in3, and cin to produce // a result out1 / out2 in carry-save redundant form. // cin is just added to the least significant bit and // is required to handle adding a negative divisor. // Fortunately, the carry (out2) is shifted left by one // bit, leaving room in the least significant bit to // insert cin. assign #1 out1 = in1 ^ in2 ^ in3; assign #1 out2 = {in1[N-2:0] & (in2[N-2:0] | in3[N-2:0]) | (in2[N-2:0] & in3[N-2:0]), cin}; endmodule ////////////// // expcalc // ////////////// module expcalc( input logic [`NE-1:0] XExp, YExp, input logic Sqrt, output logic [`NE-1:0] calcExp ); logic [`NE+1:0] SExp, DExp, SXExp; assign SXExp = {2'b00, XExp} - (`NE+2)'(`BIAS); assign SExp = (SXExp >> 1) + (`NE+2)'(`BIAS); assign DExp = {2'b00, XExp} - {2'b00, YExp} + (`NE+2)'(`BIAS); assign calcExp = Sqrt ? SExp[`NE-1:0] : DExp[`NE-1:0]; endmodule module srtpostproc( input logic [`DIVLEN+3:0] WS, WC, X, D, S, SM, input logic [$clog2(`XLEN+1)-1:0] dur, zeroCntD, input logic XSign, YSign, Signed, Int, Mod, output logic [`DIVLEN-1:0] Result, output logic calcSign ); logic [`DIVLEN+3:0] W, shiftRem, intRem, intS; logic [`DIVLEN-1:0] floatRes, intRes; logic WSign; assign W = WS + WC; assign WSign = W[`DIVLEN+3]; // Remainder handling always_comb begin if (zeroCntD == ($clog2(`XLEN+1))'(`XLEN)) begin intRem = X; intS = -1; end else if (~Signed) begin if (WSign) begin intRem = W + D; intS = SM; end else begin intRem = W; intS = S; end end else case ({YSign, XSign, WSign}) 3'b000: begin intRem = W; intS = S; end 3'b001: begin intRem = W + D; intS = SM; end 3'b010: begin intRem = W - D; intS = ~S; end 3'b011: begin intRem = W; intS = ~SM; end 3'b100: begin intRem = W; intS = ~SM; end 3'b101: begin intRem = W + D; intS = ~SM + 1; end 3'b110: begin intRem = W - D; intS = S + 1; end 3'b111: begin intRem = W; intS = S; end endcase end assign floatRes = S[`DIVLEN] ? S[`DIVLEN:1] : S[`DIVLEN-1:0]; assign intRes = intS[`DIVLEN] ? intS[`DIVLEN:1] : intS[`DIVLEN-1:0]; assign shiftRem = (intRem >> (zeroCntD+1)); always_comb begin if (Int) begin if (Mod) Result = shiftRem[`DIVLEN-1:0]; else Result = intRes >> (`DIVLEN - dur); end else Result = floatRes; end assign calcSign = XSign ^ YSign; endmodule