/////////////////////////////////////////// // dtim.sv // // Written: David_Harris@hmc.edu 9 January 2021 // Modified: // // Purpose: Data tightly integrated memory // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT // OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////// `include "wally-config.vh" module dtim #(parameter BASE=0, RANGE = 65535) ( input logic HCLK, HRESETn, input logic HSELTim, input logic [31:0] HADDR, input logic HWRITE, input logic HREADY, input logic [1:0] HTRANS, input logic [`XLEN-1:0] HWDATA, output logic [`XLEN-1:0] HREADTim, output logic HRESPTim, HREADYTim ); localparam MemStartAddr = BASE>>(1+`XLEN/32); localparam MemEndAddr = (RANGE+BASE)>>1+(`XLEN/32); logic [`XLEN-1:0] RAM[BASE>>(1+`XLEN/32):(RANGE+BASE)>>1+(`XLEN/32)]; logic [31:0] HWADDR, A; logic [`XLEN-1:0] HREADTim0; logic prevHREADYTim, risingHREADYTim; logic initTrans; logic memwrite; logic [3:0] busycount; assign initTrans = HREADY & HSELTim & (HTRANS != 2'b00); // *** this seems like a weird way to use reset flopenr #(1) memwritereg(HCLK, 1'b0, initTrans | ~HRESETn, HSELTim & HWRITE, memwrite); flopenr #(32) haddrreg(HCLK, 1'b0, initTrans | ~HRESETn, HADDR, A); // busy FSM to extend READY signal always_ff @(posedge HCLK, negedge HRESETn) if (~HRESETn) begin busycount <= 0; HREADYTim <= #1 0; end else begin if (initTrans) begin busycount <= 0; HREADYTim <= #1 0; end else if (~HREADYTim) begin if (busycount == 0) begin // TIM latency, for testing purposes. *** test with different values such as 2 HREADYTim <= #1 1; end else begin busycount <= busycount + 1; end end end assign HRESPTim = 0; // OK // Rising HREADY edge detector // Indicates when dtim is finishing up // Needed because HREADY may go high for other reasons, // and we only want to write data when finishing up. flopr #(1) prevhreadytimreg(HCLK,~HRESETn,HREADYTim,prevHREADYTim); assign risingHREADYTim = HREADYTim & ~prevHREADYTim; // Model memory read and write /* -----\/----- EXCLUDED -----\/----- integer index; initial begin for(index = MemStartAddr; index < MemEndAddr; index = index + 1) begin RAM[index] <= {`XLEN{1'b0}}; end end -----/\----- EXCLUDED -----/\----- */ /* verilator lint_off WIDTH */ generate if (`XLEN == 64) begin always_ff @(posedge HCLK) begin HWADDR <= #1 A; HREADTim0 <= #1 RAM[A[31:3]]; if (memwrite & risingHREADYTim) RAM[HWADDR[31:3]] <= #1 HWDATA; end end else begin always_ff @(posedge HCLK) begin HWADDR <= #1 A; HREADTim0 <= #1 RAM[A[31:2]]; if (memwrite & risingHREADYTim) RAM[HWADDR[31:2]] <= #1 HWDATA; end end endgenerate /* verilator lint_on WIDTH */ assign HREADTim = HREADYTim ? HREADTim0 : `XLEN'bz; endmodule