/////////////////////////////////////////// // gsharePredictor.sv // // Written: Shreya Sanghai // Email: ssanghai@hmc.edu // Created: March 16, 2021 // Modified: // // Purpose: Global History Branch predictor with parameterized global history register // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module speculativegshare #(parameter int k = 10 ) ( input logic clk, input logic reset, input logic StallF, StallD, StallE, StallM, StallW, input logic FlushD, FlushE, FlushM, FlushW, output logic [1:0] DirPredictionF, output logic DirPredictionWrongE, // update input logic [`XLEN-1:0] PCNextF, PCF, PCD, PCE, PCM, input logic [3:0] PredInstrClassF, InstrClassD, InstrClassE, input logic [3:0] WrongPredInstrClassD, input logic PCSrcE ); logic MatchF, MatchD, MatchE; logic MatchNextX, MatchXF; logic [1:0] TableDirPredictionF, DirPredictionD, DirPredictionE; logic [1:0] NewDirPredictionE; logic [k-1:0] GHRF, GHRD, GHRE; logic GHRLastF; logic [k-1:0] GHRNextF, GHRNextD, GHRNextE; logic [k-1:0] IndexNextF, IndexF, IndexD, IndexE; logic [1:0] ForwardNewDirPrediction, ForwardDirPredictionF; logic FlushDOrDirWrong; assign IndexNextF = GHRNextF ^ {PCNextF[k+1] ^ PCNextF[1], PCNextF[k:2]}; assign IndexF = GHRF ^ {PCF[k+1] ^ PCF[1], PCF[k:2]}; assign IndexD = GHRD[k-1:0] ^ {PCD[k+1] ^ PCD[1], PCD[k:2]}; assign IndexE = GHRE[k-1:0] ^ {PCE[k+1] ^ PCE[1], PCE[k:2]}; ram2p1r1wbe #(2**k, 2) PHT(.clk(clk), .ce1(~StallF | reset), .ce2(~StallM & ~FlushM), .ra1(IndexNextF), .rd1(TableDirPredictionF), .wa2(IndexE), .wd2(NewDirPredictionE), .we2(InstrClassE[0]), .bwe2(1'b1)); // if there are non-flushed branches in the pipeline we need to forward the prediction from that stage to the NextF demi stage // and then register for use in the Fetch stage. assign MatchF = PredInstrClassF[0] & ~FlushD & (IndexNextF == IndexF); assign MatchD = InstrClassD[0] & ~FlushE & (IndexNextF == IndexD); assign MatchE = InstrClassE[0] & ~FlushM & (IndexNextF == IndexE); assign MatchNextX = MatchF | MatchD | MatchE; flopenr #(1) MatchReg(clk, reset, ~StallF, MatchNextX, MatchXF); assign ForwardNewDirPrediction = MatchF ? {2{DirPredictionF[1]}} : MatchD ? {2{DirPredictionD[1]}} : NewDirPredictionE ; flopenr #(2) ForwardDirPredicitonReg(clk, reset, ~StallF, ForwardNewDirPrediction, ForwardDirPredictionF); assign DirPredictionF = MatchXF ? ForwardDirPredictionF : TableDirPredictionF; // DirPrediction pipeline flopenr #(2) PredictionRegD(clk, reset, ~StallD, DirPredictionF, DirPredictionD); flopenr #(2) PredictionRegE(clk, reset, ~StallE, DirPredictionD, DirPredictionE); satCounter2 BPDirUpdateE(.BrDir(PCSrcE), .OldState(DirPredictionE), .NewState(NewDirPredictionE)); // GHR pipeline // If Fetch has a branch, speculatively insert prediction into the GHR // If the front end is flushed or the direction prediction is wrong, reset to // most recent valid GHR. For a BP wrong this is GHRD with the correct prediction shifted in. // For FlushE this is GHRE. GHRNextE is both. assign FlushDOrDirWrong = FlushD | DirPredictionWrongE; mux3 #(k) GHRFMux(GHRF, {DirPredictionF[1], GHRF[k-1:1]}, GHRNextE[k-1:0], {FlushDOrDirWrong, PredInstrClassF[0]}, GHRNextF); // Need 1 extra bit to store the shifted out GHRF if repair needs to back shift. flopenr #(k) GHRFReg(clk, reset, ~StallF | FlushDOrDirWrong, GHRNextF, GHRF); flopenr #(1) GHRFLastReg(clk, reset, ~StallF | FlushDOrDirWrong, GHRF[0], GHRLastF); // With instruction class prediction, the class could be wrong and is checked in Decode. // If it is wrong and branch does exist then shift right and insert the prediction. // If the branch does not exist then shift left and use GHRLastF to restore the LSB. logic [k-1:0] GHRClassWrong; mux2 #(k) GHRClassWrongMux({DirPredictionD[1], GHRF[k-1:1]}, {GHRF[k-2:0], GHRLastF}, InstrClassD[0], GHRClassWrong); // As with GHRF FlushD and wrong direction prediction flushes the pipeline and restores to GHRNextE. mux3 #(k) GHRDMux(GHRF, GHRClassWrong, GHRNextE, {FlushDOrDirWrong, WrongPredInstrClassD[0]}, GHRNextD); flopenr #(k) GHRDReg(clk, reset, ~StallD | FlushDOrDirWrong, GHRNextD, GHRD); mux3 #(k) GHREMux(GHRD, GHRE, {PCSrcE, GHRD[k-2:0]}, {InstrClassE[0] & ~FlushM, FlushE}, GHRNextE); flopenr #(k) GHREReg(clk, reset, ((InstrClassE[0] & ~FlushM) & ~StallE) | FlushE, GHRNextE, GHRE); assign DirPredictionWrongE = PCSrcE != DirPredictionE[1] & InstrClassE[0]; endmodule