#!/usr/bin/python3 # Madeleine Masser-Frye mmasserfrye@hmc.edu 5/22 from operator import index import subprocess import csv import re import matplotlib.pyplot as plt import matplotlib.lines as lines import numpy as np from collections import namedtuple def synthsfromcsv(filename): with open(filename, newline='') as csvfile: csvreader = csv.reader(csvfile) global allSynths allSynths = list(csvreader) for i in range(len(allSynths)): for j in range(len(allSynths[0])): try: allSynths[i][j] = int(allSynths[i][j]) except: try: allSynths[i][j] = float(allSynths[i][j]) except: pass allSynths[i] = Synth(*allSynths[i]) def synthsintocsv(mod=None, width=None): ''' writes a CSV with one line for every available synthesis each line contains the module, tech, width, target freq, and resulting metrics ''' specStr = '' if mod != None: specStr = mod if width != None: specStr += ('_'+str(width)) specStr += '*' bashCommand = "grep 'Critical Path Length' runs/ppa_{}/reports/*qor*".format(specStr) outputCPL = subprocess.check_output(['bash','-c', bashCommand]) linesCPL = outputCPL.decode("utf-8").split('\n')[:-1] bashCommand = "grep 'Design Area' runs/ppa_{}/reports/*qor*".format(specStr) outputDA = subprocess.check_output(['bash','-c', bashCommand]) linesDA = outputDA.decode("utf-8").split('\n')[:-1] bashCommand = "grep '100' runs/ppa_{}/reports/*power*".format(specStr) outputP = subprocess.check_output(['bash','-c', bashCommand]) linesP = outputP.decode("utf-8").split('\n')[:-1] cpl = re.compile('\d{1}\.\d{6}') f = re.compile('_\d*_MHz') wm = re.compile('ppa_\w*_\d*_qor') da = re.compile('\d*\.\d{6}') p = re.compile('\d+\.\d+[e-]*\d+') t = re.compile('[a-zA-Z0-9]+nm') file = open("ppaData.csv", "w") writer = csv.writer(file) writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (mJ)']) for i in range(len(linesCPL)): line = linesCPL[i] mwm = wm.findall(line)[0][4:-4].split('_') freq = int(f.findall(line)[0][1:-4]) delay = float(cpl.findall(line)[0]) area = float(da.findall(linesDA[i])[0]) mod = mwm[0] width = int(mwm[1]) tech = t.findall(line)[0][:-2] try: #fix power = p.findall(linesP[i]) lpower = float(power[2]) denergy = float(power[1])*delay except: lpower = 0 denergy = 0 writer.writerow([mod, tech, width, freq, delay, area, lpower, denergy]) file.close() def getVals(tech, module, var, freq=None): ''' for a specified tech, module, and variable/metric returns a list of values for that metric in ascending width order with the appropriate units works at a specified target frequency or if none is given, uses the synthesis with the min delay for each width ''' if (var == 'delay'): units = " (ns)" elif (var == 'area'): units = " (sq microns)" elif (var == 'lpower'): units = " (nW)" elif (var == 'denergy'): units = " (pJ)" global widths metric = [] widthL = [] if (freq != None): for oneSynth in allSynths: if (oneSynth.freq == freq) & (oneSynth.tech == tech) & (oneSynth.module == module): widthL += [oneSynth.width] osdict = oneSynth._asdict() metric += [osdict[var]] metric = [x for _, x in sorted(zip(widthL, metric))] # ordering else: for w in widths: m = 100000 # large number to start for oneSynth in allSynths: if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == module): if (oneSynth.delay < m): m = oneSynth.delay osdict = oneSynth._asdict() met = osdict[var] metric += [met] if ('flop' in module) & (var == 'area'): metric = [m/2 for m in metric] # since two flops in each module return metric, units def genLegend(fits, coefs, r2, techcolor): ''' generates a list of two legend elements labels line with fit equation and dots with tech and r squared of the fit ''' coefsr = [str(round(c, 3)) for c in coefs] eq = '' ind = 0 if 'c' in fits: eq += coefsr[ind] ind += 1 if 'l' in fits: eq += " + " + coefsr[ind] + "*N" ind += 1 if 's' in fits: eq += " + " + coefsr[ind] + "*N^2" ind += 1 if 'g' in fits: eq += " + " + coefsr[ind] + "*log2(N)" ind += 1 if 'n' in fits: eq += " + " + coefsr[ind] + "*Nlog2(N)" ind += 1 tech, c = techcolor legend_elements = [lines.Line2D([0], [0], color=c, label=eq), lines.Line2D([0], [0], color=c, ls='', marker='o', label=tech +' $R^2$='+ str(round(r2, 4)))] return legend_elements def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn'): ''' module: string module name freq: int freq (MHz) var: string delay, area, lpower, or denergy fits: constant, linear, square, log2, Nlog2 plots given variable vs width for all matching syntheses with regression ''' if ax is None: singlePlot = True ax = plt.gca() else: singlePlot = False fullLeg = [] global techcolors global widths for combo in techcolors: tech, c = combo metric, units = getVals(tech, module, var, freq=freq) if len(metric) == 5: xp, pred, leg = regress(widths, metric, combo, fits) fullLeg += leg ax.scatter(widths, metric, color=c) ax.plot(xp, pred, color=c) ax.legend(handles=fullLeg) ax.set_xticks(widths) ax.set_xlabel("Width (bits)") ax.set_ylabel(str.title(var) + units) if singlePlot: titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (min delay)" ax.set_title(module + titleStr) plt.show() def regress(widths, var, techcolor, fits='clsgn'): ''' fits a curve to the given points returns lists of x and y values to plot that curve and legend elements with the equation ''' funcArr = genFuncs(fits) mat = [] for w in widths: row = [] for func in funcArr: row += [func(w)] mat += [row] y = np.array(var, dtype=np.float) coefsResid = np.linalg.lstsq(mat, y, rcond=None) coefs = coefsResid[0] try: resid = coefsResid[1][0] except: resid = 0 r2 = 1 - resid / (y.size * y.var()) xp = np.linspace(8, 140, 200) pred = [] for x in xp: n = [func(x) for func in funcArr] pred += [sum(np.multiply(coefs, n))] leg = genLegend(fits, coefs, r2, techcolor) return xp, pred, leg def makeCoefTable(tech): ''' not currently in use, may salvage later writes CSV with each line containing the coefficients for a regression fit to a particular combination of module, metric, and target frequency ''' file = open("ppaFitting.csv", "w") writer = csv.writer(file) writer.writerow(['Module', 'Metric', 'Freq', '1', 'N', 'N^2', 'log2(N)', 'Nlog2(N)', 'R^2']) for mod in ['add', 'mult', 'comparator', 'shifter']: for comb in [['delay', 5000], ['area', 5000], ['area', 10]]: var = comb[0] freq = comb[1] metric, units = getVals(tech, mod, freq, var) global widths coefs, r2, funcArr = regress(widths, metric) row = [mod] + comb + np.ndarray.tolist(coefs) + [r2] writer.writerow(row) file.close() def genFuncs(fits='clsgn'): ''' helper function for regress() returns array of functions with one for each term desired in the regression fit ''' funcArr = [] if 'c' in fits: funcArr += [lambda x: 1] if 'l' in fits: funcArr += [lambda x: x] if 's' in fits: funcArr += [lambda x: x**2] if 'g' in fits: funcArr += [lambda x: np.log2(x)] if 'n' in fits: funcArr += [lambda x: x*np.log2(x)] return funcArr def noOutliers(freqs, delays, areas): ''' returns a pared down list of freqs, delays, and areas cuts out any syntheses in which target freq isn't within 75% of the min delay target to focus on interesting area helper function to freqPlot() ''' f=[] d=[] a=[] try: ind = delays.index(min(delays)) med = freqs[ind] for i in range(len(freqs)): norm = freqs[i]/med if (norm > 0.25) & (norm<1.75): f += [freqs[i]] d += [delays[i]] a += [areas[i]] except: pass return f, d, a def freqPlot(tech, mod, width): ''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width ''' global allSynths freqsL, delaysL, areasL = ([[], []] for i in range(3)) for oneSynth in allSynths: if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech): ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period freqsL[ind] += [oneSynth.freq] delaysL[ind] += [oneSynth.delay] areasL[ind] += [oneSynth.area] f, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, 1, sharex=True) for ind in [0,1]: areas = areasL[ind] delays = delaysL[ind] freqs = freqsL[ind] if ('flop' in mod): areas = [m/2 for m in areas] # since two flops in each module freqs, delays, areas = noOutliers(freqs, delays, areas) c = 'blue' if ind else 'green' adprod = adprodpow(areas, delays, 2) adpow = adprodpow(areas, delays, 3) adpow2 = adprodpow(areas, delays, 4) ax1.scatter(freqs, delays, color=c) ax2.scatter(freqs, areas, color=c) ax3.scatter(freqs, adprod, color=c) ax4.scatter(freqs, adpow, color=c) ax5.scatter(freqs, adpow2, color=c) legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'), lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')] ax1.legend(handles=legend_elements) ax4.set_xlabel("Target Freq (MHz)") ax1.set_ylabel('Delay (ns)') ax2.set_ylabel('Area (sq microns)') ax3.set_ylabel('Area * Delay') ax4.set_ylabel('Area * $Delay^2$') ax1.set_title(mod + '_' + str(width)) plt.show() def adprodpow(areas, delays, pow): ''' for each value in [areas] returns area*delay^pow helper function for freqPlot''' result = [] for i in range(len(areas)): result += [(areas[i])*(delays[i])**pow] return result def plotPPA(mod, freq=None): ''' for the module specified, plots width vs delay, area, leakage power, and dynamic energy with fits if no freq specified, uses the synthesis with min delay for each width overlays data from both techs ''' fig, axs = plt.subplots(2, 2) oneMetricPlot(mod, 'delay', ax=axs[0,0], fits='clg', freq=freq) oneMetricPlot(mod, 'area', ax=axs[0,1], fits='s', freq=freq) oneMetricPlot(mod, 'lpower', ax=axs[1,0], fits='c', freq=freq) oneMetricPlot(mod, 'denergy', ax=axs[1,1], fits='s', freq=freq) titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (min delay)" plt.suptitle(mod + titleStr) plt.show() Synth = namedtuple("Synth", "module tech width freq delay area lpower denergy") techcolors = [['sky90', 'green'], ['tsmc28', 'blue']] widths = [8, 16, 32, 64, 128] synthsintocsv() synthsfromcsv('ppaData.csv') # your csv here! ### examples # oneMetricPlot('add', 'delay') #freqPlot('sky90', 'add', 8) #plotPPA('add')