// Exception logic for the floating point adder. Note: We may // actually want to move to where the result is computed. module exception_div ( input logic [63:0] A, // 1st input operand (op1) input logic [63:0] B, // 2nd input operand (op2) input logic op_type, // Determine operation output logic [2:0] Ztype, // Indicates type of result (Z) output logic Invalid // Invalid operation exception ); logic AzeroM; // '1' if the mantissa of A is zero logic BzeroM; // '1' if the mantissa of B is zero logic AzeroE; // '1' if the exponent of A is zero logic BzeroE; // '1' if the exponent of B is zero logic AonesE; // '1' if the exponent of A is all ones logic BonesE; // '1' if the exponent of B is all ones logic AInf; // '1' if A is infinite logic BInf; // '1' if B is infinite logic AZero; // '1' if A is 0 logic BZero; // '1' if B is 0 logic ANaN; // '1' if A is a not-a-number logic BNaN; // '1' if B is a not-a-number logic ASNaN; // '1' if A is a signalling not-a-number logic BSNaN; // '1' if B is a signalling not-a-number logic ZSNaN; // '1' if result Z is a quiet NaN logic ZInf; // '1' if result Z is an infnity logic Zero; // '1' if result is zero logic NegSqrt; // '1' if sqrt and operand is negative //***take this module out and add more registers or just recalculate it all // Determine if mantissas are all zeros assign AzeroM = (A[51:0] == 52'h0); assign BzeroM = (B[51:0] == 52'h0); // Determine if exponents are all ones or all zeros assign AonesE = A[62]&A[61]&A[60]&A[59]&A[58]&A[57]&A[56]&A[55]&A[54]&A[53]&A[52]; assign BonesE = B[62]&B[61]&B[60]&B[59]&B[58]&B[57]&B[56]&B[55]&B[54]&B[53]&B[52]; assign AzeroE = ~(A[62]|A[61]|A[60]|A[59]|A[58]|A[57]|A[56]|A[55]|A[54]|A[53]|A[52]); assign BzeroE = ~(B[62]|B[61]|B[60]|B[59]|B[58]|B[57]|B[56]|B[55]|B[54]|B[53]|B[52]); // Determine special cases. Note: Zero is not really a special case. assign AInf = AonesE & AzeroM; assign BInf = BonesE & BzeroM; assign ANaN = AonesE & ~AzeroM; assign BNaN = BonesE & ~BzeroM; assign ASNaN = ANaN & A[50]; assign BSNaN = ANaN & A[50]; assign AZero = AzeroE & AzeroM; assign BZero = BzeroE & BzeroE; // Is NaN if operand is negative and its a sqrt assign NegSqrt = (A[63] & op_type & ~AZero); // An "Invalid Operation" exception occurs if (A or B is a signalling NaN) // or (A and B are both Infinite) assign Invalid = ASNaN | BSNaN | (((AInf & BInf) | (AZero & BZero))&~op_type) | NegSqrt; // The result is a quiet NaN if (an "Invalid Operation" exception occurs) // or (A is a NaN) or (B is a NaN). assign ZSNaN = Invalid | ANaN | BNaN; // The result is zero assign Zero = (AZero | BInf)&~op_type | AZero&op_type; // The result is +Inf if ((A is Inf) or (B is 0)) and (the // result is not a quiet NaN). assign ZInf = (AInf | BZero)&~ZSNaN&~op_type | AInf&op_type&~ZSNaN; // Set the type of the result as follows: // Ztype Result // 000 Normal // 010 Infinity // 011 Zero // 110 Div by 0 // 111 SNaN assign Ztype[2] = (ZSNaN); assign Ztype[1] = (ZSNaN) | (Zero) | (ZInf); assign Ztype[0] = (ZSNaN) | (Zero); endmodule // exception