/////////////////////////////////////////// // fdivsqrtpostproc.sv // // Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu // Modified:13 January 2022 // // Purpose: Combined Divide and Square Root Floating Point and Integer Unit // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fdivsqrtpostproc( input logic clk, reset, input logic StallM, input logic [`DIVb+3:0] WS, WC, input logic [`DIVb-1:0] D, input logic [`DIVb:0] FirstU, FirstUM, input logic [`DIVb+1:0] FirstC, input logic SqrtE, input logic Firstun, SqrtM, SpecialCaseM, NegQuotM, input logic [`XLEN-1:0] AM, input logic RemOpM, ALTBM, BZeroM, AsM, W64M, input logic [`DIVBLEN:0] nM, mM, output logic [`DIVb:0] QmM, output logic WZeroE, output logic DivSM, output logic [`XLEN-1:0] FPIntDivResultM ); logic [`DIVb+3:0] W, Sum, DM; logic [`DIVb:0] PreQmM; logic NegStickyM; logic weq0E, weq0M, WZeroM; logic signed [`DIVb+3:0] PreResultM, PreFPIntDivResultM; logic [`XLEN-1:0] SpecialFPIntDivResultM; ////////////////////////// // Execute Stage: Detect early termination for an exact result ////////////////////////// // check for early termination on an exact result. aplusbeq0 #(`DIVb+4) wspluswceq0(WS, WC, weq0E); if (`RADIX == 2) begin: R2EarlyTerm logic [`DIVb+3:0] FZeroE, FZeroSqrtE, FZeroDivE; logic [`DIVb+2:0] FirstK; logic wfeq0E; logic [`DIVb+3:0] WCF, WSF; assign FirstK = ({1'b1, FirstC} & ~({1'b1, FirstC} << 1)); assign FZeroSqrtE = {FirstUM[`DIVb], FirstUM, 2'b0} | {FirstK,1'b0}; // F for square root assign FZeroDivE = {3'b001,D,1'b0}; // F for divide mux2 #(`DIVb+4) fzeromux(FZeroDivE, FZeroSqrtE, SqrtE, FZeroE); csa #(`DIVb+4) fadd(WS, WC, FZeroE, 1'b0, WSF, WCF); // compute {WCF, WSF} = {WS + WC + FZero}; aplusbeq0 #(`DIVb+4) wcfpluswsfeq0(WCF, WSF, wfeq0E); assign WZeroE = weq0E|(wfeq0E & Firstun); end else begin assign WZeroE = weq0E; end ////////////////////////// // E/M Pipeline register ////////////////////////// flopenr #(1) WZeroMReg(clk, reset, ~StallM, WZeroE, WZeroM); flopenr #(1) WeqZeroMReg(clk, reset, ~StallM, weq0E, weq0M); ////////////////////////// // Memory Stage: Postprocessing ////////////////////////// // If the result is not exact, the sticky should be set assign DivSM = ~WZeroM & ~(SpecialCaseM & SqrtM); // ***unsure why SpecialCaseM has to be gated by SqrtM, but otherwise fails regression on divide // Determine if sticky bit is negative // *** look for ways to optimize this. Shift shouldn't be needed. assign Sum = WC + WS; assign NegStickyM = Sum[`DIVb+3]; mux2 #(`DIVb+1) preqmmux(FirstU, FirstUM, NegStickyM, PreQmM);// Select U or U-1 depending on negative sticky bit mux2 #(`DIVb+1) qmmux(PreQmM, (PreQmM << 1), SqrtM, QmM); if (`IDIV_ON_FPU) begin // Int supported logic [`DIVBLEN:0] NormShiftM; logic [`DIVb+3:0] IntQuotM, IntRemM, NormRemM, NormRemDM; assign W = $signed(Sum) >>> `LOGR; assign DM = {4'b0001, D}; // Integer remainder: sticky and sign correction muxes mux2 #(`DIVb+4) normremdmux(W, W+DM, NegStickyM, NormRemDM); mux2 #(`DIVb+4) normremsmux(NormRemDM, -NormRemDM, AsM, NormRemM); // special case logic always_comb if (BZeroM) begin // Divide by zero if (RemOpM) SpecialFPIntDivResultM = AM; else SpecialFPIntDivResultM = {(`XLEN){1'b1}}; end else if (ALTBM) begin // Numerator is zero if (RemOpM) SpecialFPIntDivResultM = AM; else SpecialFPIntDivResultM = '0; end else begin logic [`DIVb+3:0] PreIntQuotM; if (WZeroM) begin if (weq0M) begin PreIntQuotM = {3'b000, FirstU}; IntRemM = '0; end else begin PreIntQuotM = {3'b000, FirstUM}; IntRemM = '0; end end else begin PreIntQuotM = {3'b000, PreQmM}; IntRemM = NormRemM; end // flip sign if necessary if (NegQuotM) IntQuotM = -PreIntQuotM; else IntQuotM = PreIntQuotM; if (RemOpM) begin NormShiftM = ALTBM ? 0 : (mM + (`DIVBLEN+1)'(`DIVa)); // no postshift if forwarding input A to remainder PreResultM = IntRemM; end else begin NormShiftM = ((`DIVBLEN+1)'(`DIVb) - (nM * (`DIVBLEN+1)'(`LOGR))); PreResultM = IntQuotM; end PreFPIntDivResultM = $signed(PreResultM >>> NormShiftM); SpecialFPIntDivResultM = PreFPIntDivResultM[`XLEN-1:0]; end // sign extend result for W64 if (`XLEN==64) begin mux2 #(64) resmux(SpecialFPIntDivResultM[`XLEN-1:0], {{(`XLEN-32){SpecialFPIntDivResultM[31]}}, SpecialFPIntDivResultM[31:0]}, // Sign extending in case of W64 W64M, FPIntDivResultM); end else assign FPIntDivResultM = SpecialFPIntDivResultM[`XLEN-1:0]; end endmodule