/////////////////////////////////////////// // fdivsqrtpreproc.sv // // Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu // Modified:13 January 2022 // // Purpose: Combined Divide and Square Root Floating Point and Integer Unit // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fdivsqrtpreproc ( input logic clk, input logic IFDivStartE, input logic [`NF:0] Xm, Ym, input logic [`NE-1:0] Xe, Ye, input logic [`FMTBITS-1:0] Fmt, input logic Sqrt, input logic XZeroE, input logic [2:0] Funct3E, output logic [`NE+1:0] QeM, output logic [`DIVb+3:0] X, output logic [`DIVb-1:0] DPreproc, // Int-specific input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B input logic IntDivE, W64E, output logic ISpecialCaseE, output logic [`DIVBLEN:0] nE, nM, mM, output logic NegQuotM, ALTBM, IntDivM, W64M, output logic AsM, BZeroM, output logic [`XLEN-1:0] AM ); logic [`DIVb-1:0] XPreproc; logic [`DIVb:0] PreSqrtX; logic [`DIVb+3:0] DivX, DivXShifted, SqrtX, PreShiftX; // Variations of dividend, to be muxed logic [`NE+1:0] QeE; // Quotient Exponent (FP only) logic [`DIVb-1:0] IFNormLenX, IFNormLenD; // Correctly-sized inputs for iterator logic [`DIVBLEN:0] mE, ell; // Leading zeros of inputs logic NumerZeroE; // Numerator is zero (X or A) logic AZeroE, BZeroE; // A or B is Zero for integer division if (`IDIV_ON_FPU) begin:intpreproc // Int Supported logic signedDiv, NegQuotE; logic AsBit, BsBit, AsE, BsE, ALTBE; logic [`XLEN-1:0] AE, BE, PosA, PosB; logic [`DIVBLEN:0] ZeroDiff, p; // Extract inputs, signs, zero, depending on W64 mode if applicable assign signedDiv = ~Funct3E[0]; assign NegQuotE = AsE ^ BsE; // Quotient is negative // Source handling if (`XLEN==64) begin // 64-bit, supports W64 mux2 #(1) azeromux(~(|ForwardedSrcAE), ~(|ForwardedSrcAE[31:0]), W64E, AZeroE); mux2 #(1) bzeromux(~(|ForwardedSrcBE), ~(|ForwardedSrcBE[31:0]), W64E, BZeroE); mux2 #(1) abitmux(ForwardedSrcAE[63], ForwardedSrcAE[31], W64E, AsBit); mux2 #(1) bbitmux(ForwardedSrcBE[63], ForwardedSrcBE[31], W64E, BsBit); mux2 #(64) amux(ForwardedSrcAE, {{(`XLEN-32){AsE}}, ForwardedSrcAE[31:0]}, W64E, AE); mux2 #(64) bmux(ForwardedSrcBE, {{(`XLEN-32){BsE}}, ForwardedSrcBE[31:0]}, W64E, BE); assign AsE = signedDiv & AsBit; assign BsE = signedDiv & BsBit; end else begin // 32 bits only assign AsE = signedDiv & ForwardedSrcAE[31]; assign BsE = signedDiv & ForwardedSrcBE[31]; assign AE = ForwardedSrcAE; assign BE = ForwardedSrcBE; assign AZeroE = ~(|ForwardedSrcAE); assign BZeroE = ~(|ForwardedSrcBE); end // Force integer inputs to be postiive mux2 #(`XLEN) posamux(AE, -AE, AsE, PosA); mux2 #(`XLEN) posbmux(BE, -BE, BsE, PosB); // Select integer or floating point inputs mux2 #(`DIVb) ifxmux({Xm, {(`DIVb-`NF-1){1'b0}}}, {PosA, {(`DIVb-`XLEN){1'b0}}}, IntDivE, IFNormLenX); mux2 #(`DIVb) ifdmux({Ym, {(`DIVb-`NF-1){1'b0}}}, {PosB, {(`DIVb-`XLEN){1'b0}}}, IntDivE, IFNormLenD); // calculate number of fractional bits p assign ZeroDiff = mE - ell; // Difference in number of leading zeros assign ALTBE = ZeroDiff[`DIVBLEN]; // A less than B (A has more leading zeros) mux2 #(`DIVBLEN+1) pmux(ZeroDiff, {(`DIVBLEN+1){1'b0}}, ALTBE, p); // *** is there a more graceful way to write these constants // Integer special cases (terminate immediately) assign ISpecialCaseE = BZeroE | ALTBE; /* verilator lint_off WIDTH */ // calculate number of fractional digits nE and right shift amount RightShiftX to complete in discrete number of steps if (`LOGRK > 0) begin // more than 1 bit per cycle logic [`LOGRK-1:0] IntTrunc, RightShiftX; logic [`DIVBLEN:0] TotalIntBits, IntSteps; assign TotalIntBits = `LOGR + p; // Total number of result bits (r integer bits plus p fractional bits) assign IntTrunc = TotalIntBits % `RK; // Truncation check for ceiling operator assign IntSteps = (TotalIntBits >> `LOGRK) + |IntTrunc; // Number of steps for int div assign nE = (IntSteps * `DIVCOPIES) - 1; // Fractional digits assign RightShiftX = `RK - 1 - ((TotalIntBits - 1) % `RK); // Right shift amount assign DivXShifted = DivX >> RightShiftX; // shift X by up to R*K-1 to complete in nE steps end else begin // radix 2 1 copy doesn't require shifting assign nE = p; assign DivXShifted = DivX; end /* verilator lint_on WIDTH */ // Selet integer or floating-point operands mux2 #(1) numzmux(XZeroE, AZeroE, IntDivE, NumerZeroE); mux2 #(`DIVb+4) xmux(PreShiftX, DivXShifted, IntDivE, X); // pipeline registers flopen #(1) mdureg(clk, IFDivStartE, IntDivE, IntDivM); flopen #(1) w64reg(clk, IFDivStartE, W64E, W64M); flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM); flopen #(1) negquotreg(clk, IFDivStartE, NegQuotE, NegQuotM); flopen #(1) bzeroreg(clk, IFDivStartE, BZeroE, BZeroM); flopen #(1) asignreg(clk, IFDivStartE, AsE, AsM); flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, nE, nM); flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, mE, mM); flopen #(`XLEN) srcareg(clk, IFDivStartE, AE, AM); end else begin // Int not supported assign IFNormLenX = {Xm, {(`DIVb-`NF-1){1'b0}}}; assign IFNormLenD = {Ym, {(`DIVb-`NF-1){1'b0}}}; assign NumerZeroE = XZeroE; assign X = PreShiftX; end // count leading zeros for Subnorm FP and to normalize integer inputs lzc #(`DIVb) lzcX (IFNormLenX, ell); lzc #(`DIVb) lzcY (IFNormLenD, mE); // Normalization shift assign XPreproc = IFNormLenX << (ell + {{`DIVBLEN{1'b0}}, 1'b1}); assign DPreproc = IFNormLenD << (mE + {{`DIVBLEN{1'b0}}, 1'b1}); // append leading 1 (for normal inputs) // shift square root to be in range [1/4, 1) // Normalized numbers are shifted right by 1 if the exponent is odd // Denormalized numbers have Xe = 0 and an unbiased exponent of 1-BIAS. They are shifted right if the number of leading zeros is odd. mux2 #(`DIVb+1) sqrtxmux({~XZeroE, XPreproc}, {1'b0, ~XZeroE, XPreproc[`DIVb-1:1]}, (Xe[0] ^ ell[0]), PreSqrtX); assign DivX = {3'b000, ~NumerZeroE, XPreproc}; // Sqrt is initialized on step one as R(X-1), so depends on Radix if (`RADIX == 2) assign SqrtX = {3'b111, PreSqrtX}; else assign SqrtX = {2'b11, PreSqrtX, 1'b0}; mux2 #(`DIVb+4) prexmux(DivX, SqrtX, Sqrt, PreShiftX); // Floating-point exponent fdivsqrtexpcalc expcalc(.Fmt, .Xe, .Ye, .Sqrt, .XZero(XZeroE), .ell, .m(mE), .Qe(QeE)); flopen #(`NE+2) expreg(clk, IFDivStartE, QeE, QeM); endmodule