/////////////////////////////////////////// // fdivsqrtpostproc.sv // // Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu // Modified:13 January 2022 // // Purpose: Combined Divide and Square Root Floating Point and Integer Unit // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fdivsqrtpostproc( input logic [`DIVb+3:0] WS, WC, input logic [`DIVb-1:0] D, input logic [`DIVb:0] FirstU, FirstUM, input logic [`DIVb+1:0] FirstC, input logic Firstun, input logic SqrtM, input logic SpecialCaseM, input logic [`XLEN-1:0] ForwardedSrcAE, input logic RemOpM, ALTBM, BZeroM, As, input logic [`DIVBLEN:0] nM, mM, output logic [`DIVb:0] QmM, output logic WZeroM, output logic DivSM, output logic [`XLEN-1:0] FPIntDivResultM ); logic [`DIVb+3:0] W, Sum, RemDM; logic [`DIVb:0] PreQmM; logic NegStickyM, PostIncM; logic weq0; logic [`DIVBLEN:0] NormShiftM; logic [`DIVb:0] IntQuotM, NormQuotM; logic [`DIVb+3:0] IntRemM, NormRemM; logic [`DIVb+3:0] PreResultM, PreFPIntDivResultM; // check for early termination on an exact result. If the result is not exact, the sticky should be set aplusbeq0 #(`DIVb+4) wspluswceq0(WS, WC, weq0); if (`RADIX == 2) begin logic [`DIVb+3:0] FZero; logic [`DIVb+2:0] FirstK; logic wfeq0; logic [`DIVb+3:0] WCF, WSF; assign FirstK = ({1'b1, FirstC} & ~({1'b1, FirstC} << 1)); assign FZero = SqrtM ? {FirstUM[`DIVb], FirstUM, 2'b0} | {FirstK,1'b0} : {3'b001,D,1'b0}; csa #(`DIVb+4) fadd(WS, WC, FZero, 1'b0, WSF, WCF); // compute {WCF, WSF} = {WS + WC + FZero}; aplusbeq0 #(`DIVb+4) wcfpluswsfeq0(WCF, WSF, wfeq0); assign WZeroM = weq0|(wfeq0 & Firstun); end else begin assign WZeroM = weq0; end assign DivSM = ~WZeroM & ~(SpecialCaseM & SqrtM); // ***unsure why SpecialCaseM has to be gated by SqrtM, but otherwise fails regression on divide // Determine if sticky bit is negative assign Sum = WC + WS; assign W = $signed(Sum) >>> `LOGR; assign NegStickyM = W[`DIVb+3]; assign RemDM = {4'b0000, D}; // Integer division: sign handling for div and rem always_comb if (~As) if (NegStickyM) begin NormQuotM = FirstUM; NormRemM = W + RemDM; PostIncM = 0; end else begin NormQuotM = FirstU; NormRemM = W; PostIncM = 0; end else if (NegStickyM | weq0) begin NormQuotM = FirstU; NormRemM = W; PostIncM = 0; end else begin NormQuotM = FirstU; NormRemM = W - RemDM; PostIncM = 1; end // Integer division: Special cases always_comb if(ALTBM) begin IntQuotM = '0; IntRemM = {{(`DIVb-`XLEN+4){1'b0}}, ForwardedSrcAE}; end else if (BZeroM) begin IntQuotM = '1; IntRemM = {{(`DIVb-`XLEN+4){1'b0}}, ForwardedSrcAE}; end else if (WZeroM) begin if (weq0) begin IntQuotM = FirstU; IntRemM = '0; end else begin IntQuotM = FirstUM; IntRemM = '0; end end else begin IntQuotM = NormQuotM; IntRemM = NormRemM; end always_comb if (RemOpM) begin NormShiftM = (mM + (`DIVBLEN+1)'(`DIVa)); PreResultM = IntRemM; end else begin NormShiftM = ((`DIVBLEN+1)'(`DIVb) - (nM * (`DIVBLEN+1)'(`LOGR))); PreResultM = {3'b000, IntQuotM}; end // division takes the result from the next cycle, which is shifted to the left one more time so the square root also needs to be shifted assign PreFPIntDivResultM = ($signed(PreResultM) >>> NormShiftM) + {{(`DIVb+3){1'b0}}, (PostIncM & ~RemOpM)}; assign FPIntDivResultM = PreFPIntDivResultM[`XLEN-1:0]; assign PreQmM = NegStickyM ? FirstUM : FirstU; // Select U or U-1 depending on negative sticky bit assign QmM = SqrtM ? (PreQmM << 1) : PreQmM; endmodule