From c1c4024b4bc65ffa476df2196532c5ae3e63ee59 Mon Sep 17 00:00:00 2001 From: Ross Thompson Date: Fri, 6 Jan 2023 18:04:49 -0600 Subject: [PATCH] Fancy plot for branch predictor. --- bin/parseHPMC.py | 133 +++++++++++++++++++++++++++++++++-------------- 1 file changed, 95 insertions(+), 38 deletions(-) diff --git a/bin/parseHPMC.py b/bin/parseHPMC.py index 8830adf6..3e4132e0 100755 --- a/bin/parseHPMC.py +++ b/bin/parseHPMC.py @@ -2,6 +2,7 @@ import os import sys +import matplotlib.pyplot as plt def ComputeCPI(benchmark): 'Computes and inserts CPI into benchmark stats.' @@ -45,7 +46,16 @@ def ComputeDCacheMissRate(benchmark): (nameString, opt, dataDict) = benchmark DCacheMR = 100.0 * int(dataDict['D Cache Miss']) / int(dataDict['D Cache Access']) dataDict['DCacheMR'] = DCacheMR - + +def ComputeAll(benchmarks): + for benchmark in benchmarks: + ComputeCPI(benchmark) + ComputeBranchDirMissRate(benchmark) + ComputeBranchTargetMissRate(benchmark) + ComputeRASMissRate(benchmark) + ComputeInstrClassMissRate(benchmark) + ComputeICacheMissRate(benchmark) + ComputeDCacheMissRate(benchmark) def printStats(benchmark): (nameString, opt, dataDict) = benchmark @@ -64,45 +74,92 @@ def printStats(benchmark): print('D Cache Miss Rate %1.4f' % dataDict['DCacheMR']) print() +def ProcessFile(fileName): + '''Extract preformance counters from a modelsim log. Outputs a list of tuples for each test/benchmark. + The tuple contains the test name, optimization characteristics, and dictionary of performance counters.''' + # 1 find lines with Read memfile and extract test name + # 2 parse counters into a list of (name, value) tuples (dictionary maybe?) + benchmarks = [] + transcript = open(fileName, 'r') + HPMClist = { } + testName = '' + for line in transcript.readlines(): + lineToken = line.split() + if(len(lineToken) > 3 and lineToken[1] == 'Read' and lineToken[2] == 'memfile'): + opt = lineToken[3].split('/')[-4] + testName = lineToken[3].split('/')[-1].split('.')[0] + HPMClist = { } + elif(len(lineToken) > 4 and lineToken[1][0:3] == 'Cnt'): + countToken = line.split('=')[1].split() + value = countToken[0] + name = ' '.join(countToken[1:]) + HPMClist[name] = value + elif ('is done' in line): + benchmarks.append((testName, opt, HPMClist)) + return benchmarks -# 1 find lines with Read memfile and extract test name -# 2 parse counters into a list of (name, value) tuples (dictionary maybe?) -# 3 process into useful data - # cache hit rates - # cache fill time - # branch predictor status - # hazard counts - # CPI - # instruction distribution +def FormatToPlot(currBenchmark): + names = [] + values = [] + for config in currBenchmark: + print ('config' , config) + names.append(config[0]) + values.append(config[1]) + return (names, values) -# steps 1 and 2 -benchmarks = [] -transcript = open(sys.argv[1], 'r') -HPMClist = { } -testName = '' -for line in transcript.readlines(): - lineToken = line.split() - if(len(lineToken) > 3 and lineToken[1] == 'Read' and lineToken[2] == 'memfile'): - opt = lineToken[3].split('/')[-4] - testName = lineToken[3].split('/')[-1].split('.')[0] - HPMClist = { } - elif(len(lineToken) > 4 and lineToken[1][0:3] == 'Cnt'): - countToken = line.split('=')[1].split() - value = countToken[0] - name = ' '.join(countToken[1:]) - HPMClist[name] = value - elif ('is done' in line): - benchmarks.append((testName, opt, HPMClist)) +if(sys.argv[1] == '-b'): + configList = [] + for config in sys.argv[2::]: + benchmarks = ProcessFile(config) + ComputeAll(benchmarks) + configList.append((config.split('.')[0], benchmarks)) -#print(benchmarks[0]) + # Merge all configruations into a single list + benchmarkAll = [] + for (config, benchmarks) in configList: + print(config) + for benchmark in benchmarks: + (nameString, opt, dataDict) = benchmark + benchmarkAll.append((nameString, opt, config, dataDict)) -for benchmark in benchmarks: - ComputeCPI(benchmark) - ComputeBranchDirMissRate(benchmark) - ComputeBranchTargetMissRate(benchmark) - ComputeRASMissRate(benchmark) - ComputeInstrClassMissRate(benchmark) - ComputeICacheMissRate(benchmark) - ComputeDCacheMissRate(benchmark) - printStats(benchmark) + # now extract all branch prediction direction miss rates for each + # namestring + opt, config + benchmarkDict = { } + for benchmark in benchmarkAll: + (name, opt, config, dataDict) = benchmark + if name+'_'+opt in benchmarkDict: + benchmarkDict[name+'_'+opt].append((config, dataDict['BDMR'])) + else: + benchmarkDict[name+'_'+opt] = [(config, dataDict['BDMR'])] + + size = len(benchmarkDict) + index = 1 + print('Number of plots', size) + for benchmarkName in benchmarkDict: + currBenchmark = benchmarkDict[benchmarkName] + (names, values) = FormatToPlot(currBenchmark) + print(names, values) + plt.subplot(6, 7, index) + plt.bar(names, values) + plt.title(benchmarkName) + plt.ylabel('BR Dir Miss Rate (%)') + #plt.xlabel('Predictor') + index += 1 + #plt.tight_layout() + plt.show() + + +else: + # steps 1 and 2 + benchmarks = ProcessFile(sys.argv[1]) + # 3 process into useful data + # cache hit rates + # cache fill time + # branch predictor status + # hazard counts + # CPI + # instruction distribution + ComputeAll(benchmarks) + for benchmark in benchmarks: + printStats(benchmark)