diff --git a/pipelined/src/fpu/fma.sv b/pipelined/src/fpu/fma.sv index 5f595b1f..e698cdaf 100644 --- a/pipelined/src/fpu/fma.sv +++ b/pipelined/src/fpu/fma.sv @@ -85,6 +85,6 @@ module fma( fmaadd add(.Am, .Pm, .Ze, .Pe, .Ps, .As, .KillProd, .ZmSticky, .AmInv, .PmKilled, .NegSum, .InvA, .Sm, .Se, .Ss); - fmalza lza(.A(AmInv+{(3*`NF+6)'(0),InvA&~((ZmSticky&~KillProd))}), .Pm({PmKilled, 1'b0, InvA&Ps&ZmSticky&KillProd}), .SCnt); + fmalza lza(.A(AmInv), .Pm({PmKilled, 1'b0, InvA&Ps&ZmSticky&KillProd}), .Cin(InvA & ~(ZmSticky & ~KillProd)), .SCnt); endmodule diff --git a/pipelined/src/fpu/fmalza.sv b/pipelined/src/fpu/fmalza.sv index a05084e2..f70b1bc9 100644 --- a/pipelined/src/fpu/fmalza.sv +++ b/pipelined/src/fpu/fmalza.sv @@ -30,28 +30,37 @@ `include "wally-config.vh" module fmalza( // [Schmookler & Nowka, Leading zero anticipation and detection, IEEE Sym. Computer Arithmetic, 2001] - input logic [3*`NF+6:0] A, // addend - input logic [2*`NF+3:0] Pm, // product - output logic [$clog2(3*`NF+7)-1:0] SCnt // normalization shift count for the positive result + input logic [3*`NF+6:0] A, // addend + input logic [2*`NF+3:0] Pm, // product + input logic Cin, // carry in + output logic [$clog2(3*`NF+7)-1:0] SCnt // normalization shift count for the positive result ); localparam WIDTH = 3*`NF+7; - logic [WIDTH-1:0] B, P, G, K, F; - logic [WIDTH-1:0] Pp1, Gm1, Km1; + logic [WIDTH-1:0] B,F; + logic [WIDTH-1:0] P, G; + logic [WIDTH-2:0] K; + logic [WIDTH-2:0] Pp1, Gm1, Km1; assign B = {{(`NF+3){1'b0}}, Pm}; // Zero extend product + // next steps***replace P[WIDTH-1] with sub, then remove one bit from A + assign P = A^B; - assign G = A&B; - assign K= ~A&~B; + assign G = A[WIDTH-2:0]&B[WIDTH-2:0]; + assign K= ~A[WIDTH-2:0]&~B[WIDTH-2:0]; + assign Pp1 = {A[WIDTH-1], P[WIDTH-2:1]}; + assign Gm1 = {G[WIDTH-3:0], Cin}; + assign Km1 = {K[WIDTH-3:0], ~Cin}; + // Apply function to determine Leading pattern // - note: the paper linked above uses the numbering system where 0 is the most significant bit //f[n] = ~P[n]&P[n-1] note: n is the MSB //f[i] = (P[i+1]&(G[i]&~K[i-1] | K[i]&~G[i-1])) | (~P[i+1]&(K[i]&~K[i-1] | G[i]&~G[i-1])) assign F[WIDTH-1] = ~P[WIDTH-1]&P[WIDTH-2]; - assign F[WIDTH-2:0] = (P[3*`NF+6:1]&(G[3*`NF+5:0]&{~K[3*`NF+4:0], 1'b0} | K[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1})) | (~P[3*`NF+6:1]&(K[3*`NF+5:0]&{~K[3*`NF+4:0], 1'b0} | G[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1})); + assign F[WIDTH-2:0] = (Pp1&(G&~Km1 | K&~Gm1)) | (~Pp1&(K&~Km1 | G&~Gm1)); - lzc #(3*`NF+7) lzc (.num(F), .ZeroCnt(SCnt)); + lzc #(WIDTH) lzc (.num(F), .ZeroCnt(SCnt)); endmodule