22 lines
796 B
Python
22 lines
796 B
Python
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
data = pd.read_csv('amplified.csv')
|
||
|
|
||
|
plt.scatter(data['Salinity [ppt]'], data['Output Max Trial 1[Vpp]'], label = 'Trial 1', color = 'green')
|
||
|
plt.scatter(data['Salinity [ppt]'], data['Output Max Trial 2[Vpp]'], label = 'Trial 2', color = 'blue')
|
||
|
plt.scatter(data['Salinity [ppt]'], data['Output Max Trial 3[Vpp]'], label = 'Trial 3', color = 'red')
|
||
|
plt.scatter(data['Salinity [ppt]'], data['Output Max Trial 4[Vpp]'], label = 'Trial 4', color = 'pink')
|
||
|
|
||
|
z = np.polyfit(data['Salinity [ppt]'], data['Output Max Trial 4[Vpp]'], 1)
|
||
|
p = np.poly1d(z)
|
||
|
|
||
|
plt.legend(title='Trials')
|
||
|
plt.ylabel('Output Max [Vpp]', fontsize=14)
|
||
|
plt.xlabel('Salinity [ppt]', fontsize=14)
|
||
|
|
||
|
plt.show()
|
||
|
|
||
|
print(f"Trendline equation: y = {z[0]}x + {z[1]}")
|