cvw/wally-pipelined/src/muldiv/mul.sv

96 lines
4.0 KiB
Systemverilog

///////////////////////////////////////////
// mul.sv
//
// Written: David_Harris@hmc.edu 16 February 2021
// Modified:
//
// Purpose: Multiply instructions
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module mul (
// Execute Stage interface
input logic clk, reset,
input logic StallM, FlushM,
input logic [`XLEN-1:0] SrcAE, SrcBE,
input logic [2:0] Funct3E,
output logic [`XLEN*2-1:0] ProdM
);
// Number systems
// Let A' = sum(i=0, XLEN-2, A[i]*2^i)
// Unsigned: A = A' + A[XLEN-1]*2^(XLEN-1)
// Signed: A = A' - A[XLEN-1]*2^(XLEN-1)
// Multiplication: A*B
// Let P' = A' * B'
// PA = (A' * B[XLEN-1])
// PB = (B' * A[XLEN-1])
// PP = A[XLEN-1] * B[XLEN-1]
// Signed * Signed = P' + (-PA - PB)*2^(XLEN-1) + PP*2^(2XLEN-2)
// Signed * Unsigned = P' + ( PA - PB)*2^(XLEN-1) - PP*2^(2XLEN-2)
// Unsigned * Unsigned = P' + ( PA + PB)*2^(XLEN-1) + PP*2^(2XLEN-2)
logic [`XLEN*2-1:0] PP0E, PP1E, PP2E, PP3E, PP4E;
logic [`XLEN*2-1:0] PP0M, PP1M, PP2M, PP3M, PP4M;
logic [`XLEN*2-1:0] Pprime;
logic [`XLEN-2:0] PA, PB;
logic PP;
logic MULH, MULHSU, MULHU;
logic [`XLEN-1:0] Aprime, Bprime;
//////////////////////////////
// Execute Stage: Compute partial products
//////////////////////////////
assign Aprime = {1'b0, SrcAE[`XLEN-2:0]};
assign Bprime = {1'b0, SrcBE[`XLEN-2:0]};
redundantmul #(`XLEN) bigmul(.a(Aprime), .b(Bprime), .out0(PP0E), .out1(PP1E));
assign PA = {(`XLEN-1){SrcAE[`XLEN-1]}} & SrcBE[`XLEN-2:0];
assign PB = {(`XLEN-1){SrcBE[`XLEN-1]}} & SrcAE[`XLEN-2:0];
assign PP = SrcAE[`XLEN-1] & SrcBE[`XLEN-1];
// flavor of multiplication
assign MULH = (Funct3E == 3'b001);
assign MULHSU = (Funct3E == 3'b010);
// assign MULHU = (Funct3E == 2'b11); // signal unused
// Handle signs
assign PP2E = {2'b00, (MULH | MULHSU) ? ~PA : PA, {(`XLEN-1){1'b0}}};
assign PP3E = {2'b00, (MULH) ? ~PB : PB, {(`XLEN-1){1'b0}}};
always_comb
if (MULH) PP4E = {1'b1, PP, {(`XLEN-3){1'b0}}, 1'b1, {(`XLEN){1'b0}}};
else if (MULHSU) PP4E = {1'b1, ~PP, {(`XLEN-2){1'b0}}, 1'b1, {(`XLEN-1){1'b0}}};
else PP4E = {1'b0, PP, {(`XLEN*2-2){1'b0}}};
//////////////////////////////
// Memory Stage: Sum partial proudcts
//////////////////////////////
flopenrc #(`XLEN*2) PP0Reg(clk, reset, FlushM, ~StallM, PP0E, PP0M);
flopenrc #(`XLEN*2) PP1Reg(clk, reset, FlushM, ~StallM, PP1E, PP1M);
flopenrc #(`XLEN*2) PP2Reg(clk, reset, FlushM, ~StallM, PP2E, PP2M);
flopenrc #(`XLEN*2) PP3Reg(clk, reset, FlushM, ~StallM, PP3E, PP3M);
flopenrc #(`XLEN*2) PP4Reg(clk, reset, FlushM, ~StallM, PP4E, PP4M);
assign ProdM = PP0M + PP1M + PP2M + PP3M + PP4M; //SrcAE * SrcBE;
endmodule