mirror of
https://github.com/openhwgroup/cvw
synced 2025-01-24 21:44:29 +00:00
503 lines
24 KiB
Python
Executable File
503 lines
24 KiB
Python
Executable File
#!/usr/bin/python3
|
|
|
|
###########################################
|
|
## Written: Rose Thompson ross1728@gmail.com
|
|
## Created: 20 September 2023
|
|
## Modified:
|
|
##
|
|
## Purpose: Parses the performance counters from a modelsim trace.
|
|
##
|
|
## A component of the CORE-V-WALLY configurable RISC-V project.
|
|
## https://github.com/openhwgroup/cvw
|
|
##
|
|
## Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
|
|
##
|
|
## SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
|
|
##
|
|
## Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
|
|
## except in compliance with the License, or, at your option, the Apache License version 2.0. You
|
|
## may obtain a copy of the License at
|
|
##
|
|
## https:##solderpad.org/licenses/SHL-2.1/
|
|
##
|
|
## Unless required by applicable law or agreed to in writing, any work distributed under the
|
|
## License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
|
|
## either express or implied. See the License for the specific language governing permissions
|
|
## and limitations under the License.
|
|
################################################################################################
|
|
|
|
import os
|
|
import sys
|
|
import matplotlib.pyplot as plt
|
|
import math
|
|
import numpy as np
|
|
import argparse
|
|
|
|
|
|
RefDataBP = [('twobitCModel6', 'twobitCModel', 64, 128, 10.0060297551637), ('twobitCModel8', 'twobitCModel', 256, 512, 8.4320392215602), ('twobitCModel10', 'twobitCModel', 1024, 2048, 7.29493318805151),
|
|
('twobitCModel12', 'twobitCModel', 4096, 8192, 6.84739616147794), ('twobitCModel14', 'twobitCModel', 16384, 32768, 5.68432926870082), ('twobitCModel16', 'twobitCModel', 65536, 131072, 5.68432926870082),
|
|
('gshareCModel6', 'gshareCModel', 64, 128, 11.4737703417701), ('gshareCModel8', 'gshareCModel', 256, 512, 8.52341470761974), ('gshareCModel10', 'gshareCModel', 1024, 2048, 6.32975690693015),
|
|
('gshareCModel12', 'gshareCModel', 4096, 8192, 4.55424632377659), ('gshareCModel14', 'gshareCModel', 16384, 32768, 3.54251547725509), ('gshareCModel16', 'gshareCModel', 65536, 131072, 1.90424999467293)]
|
|
RefDataBTB = [('BTBCModel6', 'BTBCModel', 64, 128, 1.51480272475844), ('BTBCModel8', 'BTBCModel', 256, 512, 0.209057900418965), ('BTBCModel10', 'BTBCModel', 1024, 2048, 0.0117345454469572),
|
|
('BTBCModel12', 'BTBCModel', 4096, 8192, 0.00125540990359826), ('BTBCModel14', 'BTBCModel', 16384, 32768, 0.000732471628510962), ('BTBCModel16', 'BTBCModel', 65536, 131072, 0.000732471628510962)]
|
|
|
|
def ParseBranchListFile(path):
|
|
'''Take the path to the list of Questa Sim log files containing the performance counters outputs. File
|
|
is formated in row columns. Each row is a trace with the file, branch predictor type, and the parameters.
|
|
parameters can be any number and depend on the predictor type. Returns a list of lists.'''
|
|
lst = []
|
|
BranchList = open(path, 'r')
|
|
for line in BranchList:
|
|
tokens = line.split()
|
|
predictorLog = os.path.dirname(path) + '/' + tokens[0]
|
|
predictorType = tokens[1]
|
|
predictorParams = tokens[2::]
|
|
lst.append([predictorLog, predictorType, predictorParams])
|
|
#print(predictorLog, predictorType, predictorParams)
|
|
return lst
|
|
|
|
def ProcessFile(fileName):
|
|
'''Extract preformance counters from a modelsim log. Outputs a list of tuples for each test/benchmark.
|
|
The tuple contains the test name, optimization characteristics, and dictionary of performance counters.'''
|
|
# 1 find lines with Read memfile and extract test name
|
|
# 2 parse counters into a list of (name, value) tuples (dictionary maybe?)
|
|
benchmarks = []
|
|
transcript = open(fileName, 'r')
|
|
HPMClist = { }
|
|
testName = ''
|
|
for line in transcript.readlines():
|
|
lineToken = line.split()
|
|
if(len(lineToken) > 3 and lineToken[1] == 'Read' and lineToken[2] == 'memfile'):
|
|
opt = lineToken[3].split('/')[-4]
|
|
testName = lineToken[3].split('/')[-1].split('.')[0]
|
|
HPMClist = { }
|
|
elif(len(lineToken) > 4 and lineToken[1][0:3] == 'Cnt'):
|
|
countToken = line.split('=')[1].split()
|
|
value = int(countToken[0]) if countToken[0] != 'x' else 0
|
|
name = ' '.join(countToken[1:])
|
|
HPMClist[name] = value
|
|
elif ('is done' in line):
|
|
benchmarks.append((testName, opt, HPMClist))
|
|
return benchmarks
|
|
|
|
|
|
def ComputeStats(benchmarks):
|
|
for benchmark in benchmarks:
|
|
(nameString, opt, dataDict) = benchmark
|
|
dataDict['CPI'] = 1.0 * int(dataDict['Mcycle']) / int(dataDict['InstRet'])
|
|
dataDict['BDMR'] = 100.0 * int(dataDict['BP Dir Wrong']) / int(dataDict['Br Count'])
|
|
dataDict['BTMR'] = 100.0 * int(dataDict['BP Target Wrong']) / (int(dataDict['Br Count']) + int(dataDict['Jump Not Return']))
|
|
dataDict['RASMPR'] = 100.0 * int(dataDict['RAS Wrong']) / int(dataDict['Return'])
|
|
dataDict['ClassMPR'] = 100.0 * int(dataDict['Instr Class Wrong']) / int(dataDict['InstRet'])
|
|
dataDict['ICacheMR'] = 100.0 * int(dataDict['I Cache Miss']) / int(dataDict['I Cache Access'])
|
|
|
|
cycles = int(dataDict['I Cache Miss'])
|
|
if(cycles == 0): ICacheMR = 0
|
|
else: ICacheMR = 100.0 * int(dataDict['I Cache Cycles']) / cycles
|
|
dataDict['ICacheMT'] = ICacheMR
|
|
|
|
dataDict['DCacheMR'] = 100.0 * int(dataDict['D Cache Miss']) / int(dataDict['D Cache Access'])
|
|
|
|
(nameString, opt, dataDict) = benchmark
|
|
cycles = int(dataDict['D Cache Miss'])
|
|
if(cycles == 0): DCacheMR = 0
|
|
else: DCacheMR = 100.0 * int(dataDict['D Cache Cycles']) / cycles
|
|
dataDict['DCacheMT'] = DCacheMR
|
|
|
|
|
|
def ComputeGeometricAverage(benchmarks):
|
|
fields = ['BDMR', 'BTMR', 'RASMPR', 'ClassMPR', 'ICacheMR', 'DCacheMR', 'CPI', 'ICacheMT', 'DCacheMT']
|
|
AllAve = {}
|
|
for field in fields:
|
|
Product = 1
|
|
index = 0
|
|
for (testName, opt, HPMCList) in benchmarks:
|
|
#print(HPMCList)
|
|
value = HPMCList[field]
|
|
if(value != 0): Product *= value # if that value is 0 exclude from mean because it destories the geo mean
|
|
index += 1
|
|
AllAve[field] = Product ** (1.0/index)
|
|
benchmarks.append(('Mean', '', AllAve))
|
|
|
|
def GenerateName(predictorType, predictorParams):
|
|
if(predictorType == 'gshare' or predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class' or predictorType == 'ras' or predictorType == 'global'):
|
|
return predictorType + predictorParams[0]
|
|
elif(predictorType == 'local'):
|
|
return predictorType + predictorParams[0] + '_' + predictorParams[1]
|
|
else:
|
|
print(f'Error unsupported predictor type {predictorType}')
|
|
sys.exit(-1)
|
|
|
|
def GenerateDisplayName(predictorType, predictorParams):
|
|
if(predictorType == 'gshare' or predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class' or predictorType == 'ras' or predictorType == 'global'):
|
|
return predictorType
|
|
elif(predictorType == 'local'):
|
|
return predictorType + predictorParams[0]
|
|
else:
|
|
print(f'Error unsupported predictor type {predictorType}')
|
|
sys.exit(-1)
|
|
|
|
def ComputePredNumEntries(predictorType, predictorParams):
|
|
if(predictorType == 'gshare' or predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class' or predictorType == 'global'):
|
|
return 2**int(predictorParams[0])
|
|
elif(predictorType == 'ras'):
|
|
return int(predictorParams[0])
|
|
elif(predictorType == 'local'):
|
|
return 2**int(predictorParams[0]) * int(predictorParams[1]) + 2**int(predictorParams[1])
|
|
else:
|
|
print(f'Error unsupported predictor type {predictorType}')
|
|
sys.exit(-1)
|
|
|
|
def ComputePredSize(predictorType, predictorParams):
|
|
if(predictorType == 'gshare' or predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class' or predictorType == 'global'):
|
|
return 2*2**int(predictorParams[0])
|
|
elif(predictorType == 'ras'):
|
|
return int(predictorParams[0])
|
|
elif(predictorType == 'local'):
|
|
return 2**int(predictorParams[0]) * int(predictorParams[1]) + 2*2**int(predictorParams[1])
|
|
else:
|
|
print(f'Error unsupported predictor type {predictorType}')
|
|
sys.exit(-1)
|
|
|
|
def BuildDataBase(predictorLogs):
|
|
# Once done with the following loop, performanceCounterList will contain the predictor type and size along with the
|
|
# raw performance counter data and the processed data on a per benchmark basis. It also includes the geometric mean.
|
|
# list
|
|
# branch predictor configuration 0 (tuple)
|
|
# benchmark name
|
|
# compiler optimization
|
|
# data (dictionary)
|
|
# dictionary of performance counters
|
|
# branch predictor configuration 1 (tuple)
|
|
# benchmark name (dictionary)
|
|
# compiler optimization
|
|
# data
|
|
# dictionary of performance counters
|
|
# ...
|
|
performanceCounterList = []
|
|
for trace in predictorLogs:
|
|
predictorLog = trace[0]
|
|
predictorType = trace[1]
|
|
predictorParams = trace[2]
|
|
# Extract the performance counter data
|
|
performanceCounters = ProcessFile(predictorLog)
|
|
ComputeStats(performanceCounters)
|
|
ComputeGeometricAverage(performanceCounters)
|
|
#print(performanceCounters)
|
|
performanceCounterList.append([GenerateName(predictorType, predictorParams), GenerateDisplayName(predictorType, predictorParams), performanceCounters, ComputePredNumEntries(predictorType, predictorParams), ComputePredSize(predictorType, predictorParams)])
|
|
return performanceCounterList
|
|
|
|
def ReorderDataBase(performanceCounterList):
|
|
# Reorder the data so the benchmark name comes first, then the branch predictor configuration
|
|
benchmarkFirstList = []
|
|
for (predictorName, predictorPrefixName, benchmarks, entries, size) in performanceCounterList:
|
|
for benchmark in benchmarks:
|
|
(nameString, opt, dataDict) = benchmark
|
|
benchmarkFirstList.append((nameString, opt, predictorName, predictorPrefixName, entries, size, dataDict))
|
|
return benchmarkFirstList
|
|
|
|
def ExtractSelectedData(benchmarkFirstList):
|
|
# now extract all branch prediction direction miss rates for each
|
|
# namestring + opt, config
|
|
benchmarkDict = { }
|
|
for benchmark in benchmarkFirstList:
|
|
(name, opt, config, prefixName, entries, size, dataDict) = benchmark
|
|
#print(f'config = {config}, prefixName = {prefixName} entries = {entries}')
|
|
# use this code to distinguish speed opt and size opt.
|
|
#if opt == 'bd_speedopt_speed': NewName = name+'Sp'
|
|
#elif opt == 'bd_sizeopt_speed': NewName = name+'Sz'
|
|
#else: NewName = name
|
|
NewName = name
|
|
#print(NewName)
|
|
#NewName = name+'_'+opt
|
|
if NewName in benchmarkDict:
|
|
benchmarkDict[NewName].append((config, prefixName, entries, size, dataDict[ReportPredictorType]))
|
|
else:
|
|
benchmarkDict[NewName] = [(config, prefixName, entries, size, dataDict[ReportPredictorType])]
|
|
return benchmarkDict
|
|
|
|
def ReportAsTable(benchmarkDict):
|
|
refLine = benchmarkDict['Mean']
|
|
FirstLine = []
|
|
SecondLine = []
|
|
for Elements in refLine:
|
|
(name, typ, size, entries, val) = Elements
|
|
FirstLine.append(name)
|
|
SecondLine.append(entries if not args.size else size)
|
|
|
|
sys.stdout.write('benchmark\t\t')
|
|
for name in FirstLine:
|
|
if(len(name) < 8): sys.stdout.write('%s\t\t' % name)
|
|
else: sys.stdout.write('%s\t' % name)
|
|
sys.stdout.write('\n')
|
|
sys.stdout.write('size\t\t\t')
|
|
for size in SecondLine:
|
|
if(len(str(size)) < 8): sys.stdout.write('%d\t\t' % size)
|
|
else: sys.stdout.write('%d\t' % size)
|
|
sys.stdout.write('\n')
|
|
|
|
if(args.summary):
|
|
sys.stdout.write('Mean\t\t\t')
|
|
for (name, typ, size, entries, val) in refLine:
|
|
sys.stdout.write('%0.2f\t\t' % (val if not args.invert else 100 - val))
|
|
sys.stdout.write('\n')
|
|
|
|
if(not args.summary):
|
|
for benchmark in benchmarkDict:
|
|
length = len(benchmark)
|
|
if(length < 8): sys.stdout.write('%s\t\t\t' % benchmark)
|
|
elif(length < 16): sys.stdout.write('%s\t\t' % benchmark)
|
|
else: sys.stdout.write('%s\t' % benchmark)
|
|
for (name, typ, entries, size, val) in benchmarkDict[benchmark]:
|
|
sys.stdout.write('%0.2f\t\t' % (val if not args.invert else 100 -val))
|
|
sys.stdout.write('\n')
|
|
|
|
def ReportAsText(benchmarkDict):
|
|
if(args.summary):
|
|
mean = benchmarkDict['Mean']
|
|
print('Mean')
|
|
for (name, typ, entries. size, val) in mean:
|
|
sys.stdout.write('%s %s %0.2f\n' % (name, entries if not args.size else size, val if not args.invert else 100 - val))
|
|
|
|
if(not args.summary):
|
|
for benchmark in benchmarkDict:
|
|
print(benchmark)
|
|
for (name, type, entries, size, val) in benchmarkDict[benchmark]:
|
|
sys.stdout.write('%s %s %0.2f\n' % (name, entries if not args.size else size, val if not args.invert else 100 - val))
|
|
|
|
def Inversion(lst):
|
|
return [x if not args.invert else 100 - x for x in lst]
|
|
|
|
def BarGraph(seriesDict, xlabelList, BenchPerRow, FileName, IncludeLegend):
|
|
index = 0
|
|
NumberInGroup = len(seriesDict)
|
|
# Figure out width of bars. NumberInGroup bars + want 2 bar space
|
|
# the space between groups is 1
|
|
EffectiveNumInGroup = NumberInGroup + 2
|
|
barWidth = 1 / EffectiveNumInGroup
|
|
fig = plt.subplots(figsize = (EffectiveNumInGroup*BenchPerRow/8, 4))
|
|
colors = ['blue', 'blue', 'blue', 'blue', 'blue', 'blue', 'black', 'black', 'black', 'black', 'black', 'black']
|
|
for name in seriesDict:
|
|
values = seriesDict[name]
|
|
xpos = np.arange(len(values))
|
|
xpos = [x + index*barWidth for x in xpos]
|
|
plt.bar(xpos, Inversion(values), width=barWidth, edgecolor='grey', label=name, color=colors[index%len(colors)])
|
|
index += 1
|
|
plt.xticks([r + barWidth*(NumberInGroup/2-0.5) for r in range(0, BenchPerRow)], xlabelList)
|
|
plt.xlabel('Benchmark')
|
|
if(not args.invert): plt.ylabel('Misprediction Rate (%)')
|
|
else: plt.ylabel('Prediction Accuracy (%)')
|
|
if(IncludeLegend): plt.legend(loc='upper right', ncol=2)
|
|
plt.savefig(FileName)
|
|
|
|
def SelectPartition(xlabelListBig, seriesDictBig, group, BenchPerRow):
|
|
seriesDictTrunk = {}
|
|
for benchmarkName in seriesDictBig:
|
|
lst = seriesDictBig[benchmarkName]
|
|
seriesDictTrunk[benchmarkName] = lst[group*BenchPerRow:(group+1)*BenchPerRow]
|
|
xlabelListTrunk = xlabelListBig[group*BenchPerRow:(group+1)*BenchPerRow]
|
|
return(xlabelListTrunk, seriesDictTrunk)
|
|
|
|
|
|
def ReportAsGraph(benchmarkDict, bar, FileName):
|
|
def FormatToPlot(currBenchmark):
|
|
names = []
|
|
sizes = []
|
|
values = []
|
|
typs = []
|
|
for config in currBenchmark:
|
|
names.append(config[0])
|
|
sizes.append(config[1])
|
|
values.append(config[2])
|
|
typs.append(config[3])
|
|
return (names, sizes, values, typs)
|
|
titlesInvert = {'BDMR' : 'Branch Direction Accuracy',
|
|
'BTMR' : 'Branch Target Accuracy',
|
|
'RASMPR': 'RAS Accuracy',
|
|
'ClassMPR': 'Class Prediction Accuracy'}
|
|
titles = {'BDMR' : 'Branch Direction Misprediction',
|
|
'BTMR' : 'Branch Target Misprediction',
|
|
'RASMPR': 'RAS Misprediction',
|
|
'ClassMPR': 'Class Misprediction'}
|
|
if(args.summary):
|
|
markers = ['x', '.', '+', '*', '^', 'o', ',', 's']
|
|
colors = ['blue', 'black', 'gray', 'dodgerblue', 'lightsteelblue', 'turquoise', 'black', 'blue']
|
|
temp = benchmarkDict['Mean']
|
|
|
|
# the benchmarkDict['Mean'] contains sequencies of results for multiple
|
|
# branch predictors with various parameterizations
|
|
# group the parameterizations by the common typ.
|
|
sequencies = {}
|
|
for (name, typ, entries, size, value) in benchmarkDict['Mean']:
|
|
if not typ in sequencies:
|
|
sequencies[typ] = [(entries if not args.size else int(size/8), value)]
|
|
else:
|
|
sequencies[typ].append((entries if not args.size else int(size/8) ,value))
|
|
# then graph the common typ as a single line+scatter plot
|
|
# finally repeat for all typs of branch predictors and overlay
|
|
fig, axes = plt.subplots()
|
|
index = 0
|
|
if(args.invert): plt.title(titlesInvert[ReportPredictorType])
|
|
else: plt.title(titles[ReportPredictorType])
|
|
for branchPredName in sequencies:
|
|
data = sequencies[branchPredName]
|
|
(xdata, ydata) = zip(*data)
|
|
if args.invert: ydata = [100 - x for x in ydata]
|
|
axes.plot(xdata, ydata, color=colors[index])
|
|
axes.scatter(xdata, ydata, label=branchPredName, color=colors[index], marker=markers[index])
|
|
index = (index + 1) % len(markers)
|
|
axes.legend(loc='upper left')
|
|
axes.set_xscale("log")
|
|
axes.set_ylabel('Prediction Accuracy')
|
|
Xlabel = 'Entries' if not args.size else 'Size (bytes)'
|
|
axes.set_xlabel(Xlabel)
|
|
axes.set_xticks(xdata)
|
|
axes.set_xticklabels(xdata)
|
|
axes.grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
|
|
if(FileName == None): plt.show()
|
|
else: plt.savefig(FileName)
|
|
|
|
# if(not args.summary):
|
|
# size = len(benchmarkDict)
|
|
# sizeSqrt = math.sqrt(size)
|
|
# isSquare = math.isclose(sizeSqrt, round(sizeSqrt))
|
|
# numCol = math.floor(sizeSqrt)
|
|
# numRow = numCol + (0 if isSquare else 1)
|
|
# index = 1
|
|
# fig = plt.figure()
|
|
# for benchmarkName in benchmarkDict:
|
|
# currBenchmark = benchmarkDict[benchmarkName]
|
|
# (names, typs, sizes, values) = FormatToPlot(currBenchmark)
|
|
# #axes.plot(numRow, numCol, index)
|
|
# ax = fig.add_subplot(numRow, numCol, index)
|
|
# ax.bar(names, values)
|
|
# ax.title.set_text(benchmarkName)
|
|
# #plt.ylabel('BR Dir Miss Rate (%)')
|
|
# #plt.xlabel('Predictor')
|
|
# index += 1
|
|
|
|
if(not args.summary):
|
|
NumBenchmarks = len(benchmarkDict)
|
|
NumBenchmarksSqrt = math.sqrt(NumBenchmarks)
|
|
isSquare = math.isclose(NumBenchmarksSqrt, round(NumBenchmarksSqrt))
|
|
numCol = math.floor(NumBenchmarksSqrt)
|
|
numRow = numCol + (0 if isSquare else 1)
|
|
index = 1
|
|
BenchPerRow = 5
|
|
|
|
xlabelList = []
|
|
seriesDict = {}
|
|
|
|
for benchmarkName in benchmarkDict:
|
|
currBenchmark = benchmarkDict[benchmarkName]
|
|
xlabelList.append(benchmarkName)
|
|
for (name, typ, entries, size, value) in currBenchmark:
|
|
if(name not in seriesDict):
|
|
seriesDict[name] = [value]
|
|
else:
|
|
seriesDict[name].append(value)
|
|
if(index >= BenchPerRow): break
|
|
index += 1
|
|
|
|
xlabelListBig = []
|
|
seriesDictBig = {}
|
|
for benchmarkName in benchmarkDict:
|
|
currBenchmark = benchmarkDict[benchmarkName]
|
|
xlabelListBig.append(benchmarkName)
|
|
for (name, typ, entries, size, value) in currBenchmark:
|
|
if(name not in seriesDictBig):
|
|
seriesDictBig[name] = [value]
|
|
else:
|
|
seriesDictBig[name].append(value)
|
|
|
|
#The next step will be to split the benchmarkDict into length BenchPerRow pieces then repeat the following code
|
|
# on each piece.
|
|
for row in range(0, math.ceil(NumBenchmarks / BenchPerRow)):
|
|
(xlabelListTrunk, seriesDictTrunk) = SelectPartition(xlabelListBig, seriesDictBig, row, BenchPerRow)
|
|
FileName = 'barSegment%d.svg' % row
|
|
groupLen = len(xlabelListTrunk)
|
|
BarGraph(seriesDictTrunk, xlabelListTrunk, groupLen, FileName, (row == 0))
|
|
|
|
|
|
# main
|
|
parser = argparse.ArgumentParser(description='Parses performance counters from a Questa Sim trace to produce a graph or graphs.')
|
|
|
|
# parse program arguments
|
|
metric = parser.add_mutually_exclusive_group()
|
|
metric.add_argument('-r', '--ras', action='store_const', help='Plot return address stack (RAS) performance.', default=False, const=True)
|
|
metric.add_argument('-d', '--direction', action='store_const', help='Plot direction prediction (2-bit, Gshare, local, etc) performance.', default=False, const=True)
|
|
metric.add_argument('-t', '--target', action='store_const', help='Plot branch target buffer (BTB) performance.', default=False, const=True)
|
|
metric.add_argument('-c', '--iclass', action='store_const', help='Plot instruction classification performance.', default=False, const=True)
|
|
|
|
parser.add_argument('-s', '--summary', action='store_const', help='Show only the geometric average for all benchmarks.', default=False, const=True)
|
|
parser.add_argument('-b', '--bar', action='store_const', help='Plot graphs.', default=False, const=True)
|
|
parser.add_argument('-g', '--reference', action='store_const', help='Include the golden reference model from branch-predictor-simulator. Data stored statically at the top of %(prog)s. If you need to regenreate use CModelBranchAcurracy.sh', default=False, const=True)
|
|
parser.add_argument('-i', '--invert', action='store_const', help='Invert metric. Example Branch miss prediction becomes prediction accuracy. 100 - miss rate', default=False, const=True)
|
|
parser.add_argument('--size', action='store_const', help='Display x-axis as size in bits rather than number of table entries', default=False, const=True)
|
|
|
|
displayMode = parser.add_mutually_exclusive_group()
|
|
displayMode.add_argument('--text', action='store_const', help='Display in text format only.', default=False, const=True)
|
|
displayMode.add_argument('--table', action='store_const', help='Display in text format only.', default=False, const=True)
|
|
displayMode.add_argument('--gui', action='store_const', help='Display in text format only.', default=False, const=True)
|
|
displayMode.add_argument('--debug', action='store_const', help='Display in text format only.', default=False, const=True)
|
|
parser.add_argument('sources', nargs=1, help='File lists the input Questa transcripts to process.')
|
|
parser.add_argument('FileName', metavar='FileName', type=str, nargs='?', help='output graph to file <name>.png If not included outputs to screen.', default=None)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Figure what we are reporting
|
|
ReportPredictorType = 'BDMR' # default
|
|
if(args.ras): ReportPredictorType = 'RASMPR'
|
|
if(args.target): ReportPredictorType = 'BTMR'
|
|
if(args.iclass): ReportPredictorType = 'ClassMPR'
|
|
|
|
# Figure how we are displaying the data
|
|
ReportMode = 'gui' # default
|
|
if(args.text): ReportMode = 'text'
|
|
if(args.table): ReportMode = 'table'
|
|
if(args.debug): ReportMode = 'debug'
|
|
|
|
# read the questa sim list file.
|
|
# row, col format. each row is a questa sim run with performance counters and a particular
|
|
# branch predictor type and size. size can be multiple parameters for more complex predictors like
|
|
# local history and tage.
|
|
# <file> <type> <size>
|
|
predictorLogs = ParseBranchListFile(args.sources[0]) # digests the traces
|
|
performanceCounterList = BuildDataBase(predictorLogs) # builds a database of performance counters by trace and then by benchmark
|
|
benchmarkFirstList = ReorderDataBase(performanceCounterList) # reorder first by benchmark then trace
|
|
benchmarkDict = ExtractSelectedData(benchmarkFirstList) # filters to just the desired performance counter metric
|
|
|
|
if(args.reference and args.direction): benchmarkDict['Mean'].extend(RefDataBP)
|
|
if(args.reference and args.target): benchmarkDict['Mean'].extend(RefDataBTB)
|
|
#print(benchmarkDict['Mean'])
|
|
#print(benchmarkDict['aha-mont64Speed'])
|
|
#print(benchmarkDict)
|
|
|
|
# table format
|
|
if(ReportMode == 'table'):
|
|
ReportAsTable(benchmarkDict)
|
|
|
|
if(ReportMode == 'text'):
|
|
ReportAsText(benchmarkDict)
|
|
|
|
if(ReportMode == 'gui'):
|
|
ReportAsGraph(benchmarkDict, args.bar, args.FileName)
|
|
|
|
# *** this is only needed of -b (no -s)
|
|
|
|
# debug
|
|
#config0 = performanceCounterList[0][0]
|
|
#data0 = performanceCounterList[0][1]
|
|
#bench0 = data0[0]
|
|
#bench0name = bench0[0]
|
|
#bench0data = bench0[2]
|
|
#bench0BrCount = bench0data['Br Count']
|
|
#bench1 = data0[1]
|
|
|
|
#print(data0)
|
|
#print(bench0)
|
|
#print(bench1)
|
|
|
|
#print(bench0name)
|
|
#print(bench0BrCount)
|