cvw/fpga/zsbl/sd.c
2024-08-06 17:28:50 -05:00

256 lines
7.0 KiB
C

///////////////////////////////////////////////////////////////////////
// sd.c
//
// Written: Jaocb Pease jacob.pease@okstate.edu 7/22/2024
//
// Purpose: SD Card protocol functions
//
//
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the
// “License”); you may not use this file except in compliance with the
// License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work
// distributed under the License is distributed on an “AS IS” BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
///////////////////////////////////////////////////////////////////////
#include "sd.h"
#include "spi.h"
#include "uart.h"
#include "fail.h"
#include "time.h"
// Parallel byte update CRC7-CCITT algorithm.
// The result is the CRC7 result, left shifted over by 1
// which is perfect, since we append a 1 at the end anyway
uint8_t crc7(uint8_t prev, uint8_t in) {
// CRC polynomial 0x89
uint8_t remainder = prev ^ in;
remainder ^= (remainder >> 4) ^ (remainder >> 7);
remainder = (remainder << 1) ^ (remainder << 4);
return remainder & 0xff;
}
// Need to check this. This could be wrong as well.
uint16_t crc16(uint16_t crc, uint8_t data) {
// CRC polynomial 0x11021
crc = (uint8_t)(crc >> 8) | (crc << 8);
crc ^= data;
crc ^= (uint8_t)(crc >> 4) & 0xf;
crc ^= crc << 12;
crc ^= (crc & 0xff) << 5;
return crc;
}
// sd_cmd ------------------------------------------------------------
// Sends SD card command using SPI mode.
// This function:
// * Chooses the response length based on the input command
// * Makes use of SPI's full duplex. For every byte sent,
// a byte is received. Thus for every byte sent as part of
// a command, a useless byte must be read from the receive
// FIFO.
// * Takes advantage of the Sifive SPI peripheral spec's
// watermark and interrupt features to determine when a
// transfer is complete. This should save on cycles since
// no arbitrary delays need to be added.
uint64_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc) {
uint8_t response_len;
uint8_t i;
uint8_t shiftAmnt;
uint64_t r;
uint8_t rbyte;
// Initialize the response with 0's.
r = 0;
// Choose response length based on cmd input.
// Most commands return an R1 format response.
switch (cmd) {
case 8:
response_len = R7_RESPONSE;
break;
case 12:
response_len = R1B_RESPONSE;
break;
default:
response_len = R1_RESPONSE;
break;
}
// Make interrupt pending after response fifo receives the correct
// response length. Probably unecessary so let's wait and see what
// happens.
// write_reg(SPI_RXMARK, response_len);
// Chip select must remain asserted during transaction
if (cmd != SD_CMD_STOP_TRANSMISSION) {
write_reg(SPI_CSMODE, SIFIVE_SPI_CSMODE_MODE_HOLD);
}
// Write all 7 bytes into transfer fifo
// spi_sendbyte(0xff);
spi_dummy();
spi_sendbyte(0x40 | cmd);
spi_sendbyte(arg >> 24);
spi_sendbyte(arg >> 16);
spi_sendbyte(arg >> 8);
spi_sendbyte(arg);
spi_sendbyte(crc);
// Wait for command to send
// The Transfer IP bit should go high when the txFIFO is empty
// while(!(read_reg(SPI_IP) & 1)) {}
waittx();
// Read the dummy rxFIFO entries to move the head back to the tail
for (i = 0; i < 7; i++) {
spi_readbyte();
}
// Send "dummy signals". Since SPI is duplex,
// useless bytes must be transferred
/* for (i = 0; i < response_len; i++) { */
/* spi_sendbyte(0xFF); */
/* } */
/* // Wait for transfer fifo again */
/* waittx(); */
// Wait for actual response from SD card
// All responses start with a 0. Output of SDCIn is high, unless
// a message is being transferred.
do {
rbyte = spi_dummy();
} while ( (rbyte & 0x80) != 0 );
// Note about the compiler. In order to compile as sll instead of
// sllw, the number to shift has to be a 64 bit number.
r = ((uint64_t)rbyte) << ((response_len - 1)*8);
// Read rxfifo response
for (i = 1; i < response_len; i++) {
rbyte = spi_dummy();
r = r | (((uint64_t)rbyte) << ((response_len - 1 - i)*8));
}
if (cmd != 18) {
write_reg(SPI_CSMODE, SIFIVE_SPI_CSMODE_MODE_AUTO);
} else {
spi_dummy();
}
return r;
} // sd_cmd
uint64_t sd_read64(uint16_t * crc) {
uint64_t r;
uint8_t rbyte;
int i;
/* for (i = 0; i < 8; i++) { */
/* spi_sendbyte(0xFF); */
/* } */
/* waittx(); */
for (i = 0; i < 8; i++) {
rbyte = spi_dummy();
*crc = crc16(*crc, rbyte);
r = r | ((uint64_t)(rbyte) << ((8 - 1 - i)*8));
}
return r;
}
// Utility defines for CMD0, CMD8, CMD55, and ACMD41
#define CMD0() sd_cmd( 0, 0x00000000, 0x95) // Reset SD card into IDLE state
#define CMD8() sd_cmd( 8, 0x000001aa, 0x87) //
#define CMD55() sd_cmd(55, 0x00000000, 0x65) //
#define ACMD41() sd_cmd(41, 0x40000000, 0x77) //
// init_sd: ----------------------------------------------------------
// This first initializes the SPI peripheral then initializes the SD
// card itself. We use the uart to display anything that goes wrong.
int init_sd(uint32_t freq, uint32_t sdclk){
print_time();
println("Initializing SPI Controller.");
spi_init();
uint64_t r;
uint32_t newClockDiv;
int n;
print_time();
println("Initializing SD Card in SPI mode.");
// This is necessary. This is the card's pre-init state initialization.
write_reg(SPI_CSMODE, SIFIVE_SPI_CSMODE_MODE_OFF);
for (int i = 0; i < 10; i++) {
spi_txrx(0xff);
}
write_reg(SPI_CSMODE, SIFIVE_SPI_CSMODE_MODE_AUTO);
// CMD0 --------------------------------------------------------------
// Reset SD Card command
// Initializes SD card into SPI mode if CS is asserted '0'
// We expect to get the R1 response 0x01 which means that the
// card has been put into the idle state.
print_time();
print_uart("CMD0: ");
n = 0;
do {
r = CMD0();
n++;
if (n == 1000) {
fail();
}
} while ( r != 0x01 );
println_with_r1("Success, r = 0x", r & 0xff);
// CMD8 -------------------------------------------------------------
//
print_time();
print_uart("CMD8: ");
r = CMD8();
if ((r & 0x000000ff0000ffff) != 0x01000001aa) {
println_with_r7("Failed, 0x", r);
fail();
}
println_with_r7("Success, 0x", r);
// ACMD41 -----------------------------------------------------------
print_time();
print_uart("ACMD41: ");
n = 0;
do {
CMD55();
r = ACMD41();
n++;
if (n == 1000) {
fail();
}
} while (r == 0x1);
println_with_r1("Success, r = 0x", r & 0xff);
print_time();
println_with_dec("New clock frequency: ", (uint64_t)sdclk);
spi_set_clock(freq, sdclk);
print_time();
println("SD card is initialized.");
}