cvw/pipelined/src/muldiv/intdivrestoring.sv

138 lines
5.9 KiB
Systemverilog

///////////////////////////////////////////
// intdivrestoring.sv
//
// Written: David_Harris@hmc.edu 12 September 2021
// Modified:
//
// Purpose: Restoring integer division using a shift register and subtractor
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
/* verilator lint_off UNOPTFLAT */
module intdivrestoring (
input logic clk,
input logic reset,
input logic StallM,
input logic TrapM,
input logic DivSignedE, W64E,
input logic DivE,
//input logic [`XLEN-1:0] SrcAE, SrcBE,
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
output logic DivBusyE,
output logic [`XLEN-1:0] QuotM, RemM
);
typedef enum logic [1:0] {IDLE, BUSY, DONE} statetype;
statetype state;
logic [`XLEN-1:0] WM[`DIV_BITSPERCYCLE:0];
logic [`XLEN-1:0] XQM[`DIV_BITSPERCYCLE:0];
logic [`XLEN-1:0] DinE, XinE, DnE, DAbsBE, DAbsBM, XnE, XInitE, WnM, XQnM;
localparam STEPBITS = $clog2(`XLEN/`DIV_BITSPERCYCLE);
logic [STEPBITS:0] step;
logic Div0E, Div0M;
logic DivStartE, SignXE, SignDE, NegQE, NegWM, NegQM;
logic [`XLEN-1:0] WNextE, XQNextE;
//////////////////////////////
// Execute Stage: prepare for division calculation with control logic, W logic and absolute values, initialize W and XQ
//////////////////////////////
// Divider control signals
assign DivStartE = DivE & (state == IDLE) & ~StallM;
assign DivBusyE = (state == BUSY) | DivStartE;
// Handle sign extension for W-type instructions
if (`XLEN == 64) begin:rv64 // RV64 has W-type instructions
mux2 #(`XLEN) xinmux(ForwardedSrcAE, {ForwardedSrcAE[31:0], 32'b0}, W64E, XinE);
mux2 #(`XLEN) dinmux(ForwardedSrcBE, {{32{ForwardedSrcBE[31]&DivSignedE}}, ForwardedSrcBE[31:0]}, W64E, DinE);
end else begin // RV32 has no W-type instructions
assign XinE = ForwardedSrcAE;
assign DinE = ForwardedSrcBE;
end
// Extract sign bits and check fo division by zero
assign SignDE = DivSignedE & DinE[`XLEN-1];
assign SignXE = DivSignedE & XinE[`XLEN-1];
assign NegQE = SignDE ^ SignXE;
assign Div0E = (DinE == 0);
// Take absolute value for signed operations, and negate D to handle subtraction in divider stages
neg #(`XLEN) negd(DinE, DnE);
mux2 #(`XLEN) dabsmux(DnE, DinE, SignDE, DAbsBE); // take absolute value for signed operations, and negate for subtraction setp
neg #(`XLEN) negx(XinE, XnE);
mux3 #(`XLEN) xabsmux(XinE, XnE, ForwardedSrcAE, {Div0E, SignXE}, XInitE); // take absolute value for signed operations, or keep original value for divide by 0
// initialization multiplexers on first cycle of operation
mux2 #(`XLEN) wmux(WM[`DIV_BITSPERCYCLE], {`XLEN{1'b0}}, DivStartE, WNextE);
mux2 #(`XLEN) xmux(XQM[`DIV_BITSPERCYCLE], XInitE, DivStartE, XQNextE);
//////////////////////////////
// Memory Stage: division iterations, output sign correction
//////////////////////////////
// registers before division steps
flopen #(`XLEN) wreg(clk, DivBusyE, WNextE, WM[0]);
flopen #(`XLEN) xreg(clk, DivBusyE, XQNextE, XQM[0]);
flopen #(`XLEN) dabsreg(clk, DivStartE, DAbsBE, DAbsBM);
flopen #(3) Div0eMReg(clk, DivStartE, {Div0E, NegQE, SignXE}, {Div0M, NegQM, NegWM});
// one copy of divstep for each bit produced per cycle
genvar i;
for (i=0; i<`DIV_BITSPERCYCLE; i = i+1)
intdivrestoringstep divstep(WM[i], XQM[i], DAbsBM, WM[i+1], XQM[i+1]);
// On final setp of signed operations, negate outputs as needed to get correct sign
neg #(`XLEN) qneg(XQM[0], XQnM);
neg #(`XLEN) wneg(WM[0], WnM);
// Select appropriate output: normal, negated, or for divide by zero
mux3 #(`XLEN) qmux(XQM[0], XQnM, {`XLEN{1'b1}}, {Div0M, NegQM}, QuotM); // Q taken from XQ register, negated if necessary, or all 1s when dividing by zero
mux3 #(`XLEN) remmux(WM[0], WnM, XQM[0], {Div0M, NegWM}, RemM); // REM taken from W register, negated if necessary, or from X when dividing by zero
//////////////////////////////
// Divider FSM to sequence Busy and Done
//////////////////////////////
always_ff @(posedge clk)
if (reset | TrapM) begin
state <= IDLE;
end else if (DivStartE) begin
step <= 1;
if (Div0E) state <= DONE;
else state <= BUSY;
end else if (state == BUSY) begin // pause one cycle at beginning of signed operations for absolute value
if (step[STEPBITS] | (`XLEN==64) & W64E & step[STEPBITS-1]) begin // complete in half the time for W-type instructions
state <= DONE;
end
step <= step + 1;
end else if (state == DONE) begin
if (StallM) state <= DONE;
else state <= IDLE;
end
endmodule
/* verilator lint_on UNOPTFLAT */