mirror of
https://github.com/openhwgroup/cvw
synced 2025-01-27 15:04:36 +00:00
367 lines
11 KiB
Systemverilog
367 lines
11 KiB
Systemverilog
///////////////////////////////////////////
|
|
// srt.sv
|
|
//
|
|
// Written: David_Harris@hmc.edu 13 January 2022
|
|
// Modified:
|
|
//
|
|
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
|
|
//
|
|
// A component of the Wally configurable RISC-V project.
|
|
//
|
|
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
|
|
//
|
|
// MIT LICENSE
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
|
|
// software and associated documentation files (the "Software"), to deal in the Software
|
|
// without restriction, including without limitation the rights to use, copy, modify, merge,
|
|
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
|
|
// to whom the Software is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all copies or
|
|
// substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
|
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
|
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
|
// OR OTHER DEALINGS IN THE SOFTWARE.
|
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
`include "wally-config.vh"
|
|
|
|
`define DIVLEN ((`NF<(`XLEN+1)) ? (`XLEN + 1) : `NF)
|
|
`define EXTRAFRACBITS ((`NF<(`XLEN+1)) ? (`XLEN - `NF + 1) : 0)
|
|
`define EXTRAINTBITS ((`NF<(`XLEN+1)) ? 0 : (`NF - `XLEN))
|
|
|
|
module srt (
|
|
input logic clk,
|
|
input logic Start,
|
|
input logic Stall, // *** multiple pipe stages
|
|
input logic Flush, // *** multiple pipe stages
|
|
// Floating Point Inputs
|
|
// later add exponents, signs, special cases
|
|
input logic XSign, YSign,
|
|
input logic [`NE-1:0] XExp, YExp,
|
|
input logic [`NF-1:0] SrcXFrac, SrcYFrac,
|
|
input logic [`XLEN-1:0] SrcA, SrcB,
|
|
input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit
|
|
input logic W64, // 32-bit ints on XLEN=64
|
|
input logic Signed, // Interpret integers as signed 2's complement
|
|
input logic Int, // Choose integer inputs
|
|
input logic Sqrt, // perform square root, not divide
|
|
output logic rsign,
|
|
output logic [`DIVLEN-1:0] Quot, Rem, QuotOTFC, // *** later handle integers
|
|
output logic [`NE-1:0] rExp,
|
|
output logic [3:0] Flags
|
|
);
|
|
|
|
logic qp, qz, qm; // quotient is +1, 0, or -1
|
|
logic [`NE-1:0] calcExp;
|
|
logic calcSign;
|
|
logic [`DIVLEN-1:0] X, Dpreproc;
|
|
logic [`DIVLEN+3:0] WS, WSA, WSN, WC, WCA, WCN, D, Db, Dsel;
|
|
logic [`DIVLEN+2:0] rp, rm;
|
|
logic [$clog2(`XLEN+1)-1:0] intExp;
|
|
logic intSign;
|
|
|
|
srtpreproc preproc(SrcA, SrcB, SrcXFrac, SrcYFrac, Fmt, W64, Signed, Int, Sqrt, X, Dpreproc, intExp, intSign);
|
|
|
|
// Top Muxes and Registers
|
|
// When start is asserted, the inputs are loaded into the divider.
|
|
// Otherwise, the divisor is retained and the partial remainder
|
|
// is fed back for the next iteration.
|
|
mux2 #(`DIVLEN+4) wsmux({WSA[`DIVLEN+2:0], 1'b0}, {4'b0001, X}, Start, WSN);
|
|
flop #(`DIVLEN+4) wsflop(clk, WSN, WS);
|
|
mux2 #(`DIVLEN+4) wcmux({WCA[`DIVLEN+2:0], 1'b0}, {(`DIVLEN+4){1'b0}}, Start, WCN);
|
|
flop #(`DIVLEN+4) wcflop(clk, WCN, WC);
|
|
flopen #(`DIVLEN+4) dflop(clk, Start, {4'b0001, Dpreproc}, D);
|
|
|
|
// Quotient Selection logic
|
|
// Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
|
|
qsel2 qsel2(WS[`DIVLEN+3:`DIVLEN], WC[`DIVLEN+3:`DIVLEN], qp, qz, qm);
|
|
// Accumulate quotient digits in a shift register (now done in OTFC)
|
|
qacc #(`DIVLEN+3) qacc(clk, Start, qp, qz, qm, rp, rm);
|
|
flopen #(`NE) expflop(clk, Start, calcExp, rExp);
|
|
flopen #(1) signflop(clk, Start, calcSign, rsign);
|
|
|
|
// Divisor Selection logic
|
|
inv dinv(D, Db);
|
|
mux3onehot #(`DIVLEN) divisorsel(Db, {(`DIVLEN+4){1'b0}}, D, qp, qz, qm, Dsel);
|
|
|
|
// Partial Product Generation
|
|
csa #(`DIVLEN+4) csa(WS, WC, Dsel, qp, WSA, WCA);
|
|
|
|
otfc2 #(`DIVLEN) otfc2(clk, Start, qp, qz, qm, QuotOTFC);
|
|
|
|
expcalc expcalc(.XExp, .YExp, .calcExp);
|
|
|
|
signcalc signcalc(.XSign, .YSign, .calcSign);
|
|
|
|
srtpostproc postproc(rp, rm, Quot);
|
|
endmodule
|
|
|
|
////////////////
|
|
// Submodules //
|
|
////////////////
|
|
|
|
///////////////////
|
|
// Preprocessing //
|
|
///////////////////
|
|
module srtpreproc (
|
|
input logic [`XLEN-1:0] SrcA, SrcB,
|
|
input logic [`NF-1:0] SrcXFrac, SrcYFrac,
|
|
input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit
|
|
input logic W64, // 32-bit ints on XLEN=64
|
|
input logic Signed, // Interpret integers as signed 2's complement
|
|
input logic Int, // Choose integer inputs
|
|
input logic Sqrt, // perform square root, not divide
|
|
output logic [`DIVLEN-1:0] X, D,
|
|
output logic [$clog2(`XLEN+1)-1:0] intExp, // Quotient integer exponent
|
|
output logic intSign // Quotient integer sign
|
|
);
|
|
|
|
logic [$clog2(`XLEN+1)-1:0] zeroCntA, zeroCntB;
|
|
logic [`XLEN-1:0] PosA, PosB;
|
|
logic [`DIVLEN-1:0] ExtraA, ExtraB, PreprocA, PreprocB, PreprocX, PreprocY;
|
|
|
|
assign PosA = (Signed & SrcA[`XLEN - 1]) ? -SrcA : SrcA;
|
|
assign PosB = (Signed & SrcB[`XLEN - 1]) ? -SrcB : SrcB;
|
|
|
|
lzc #(`XLEN) lzcA (PosA, zeroCntA);
|
|
lzc #(`XLEN) lzcB (PosB, zeroCntB);
|
|
|
|
assign ExtraA = {1'b0, PosA, {`EXTRAINTBITS{1'b0}}};
|
|
assign ExtraB = {1'b0, PosB, {`EXTRAINTBITS{1'b0}}};
|
|
|
|
assign PreprocA = ExtraA << zeroCntA;
|
|
assign PreprocB = ExtraB << (zeroCntB + 1);
|
|
assign PreprocX = {SrcXFrac, {`EXTRAFRACBITS{1'b0}}};
|
|
assign PreprocY = {SrcYFrac, {`EXTRAFRACBITS{1'b0}}};
|
|
|
|
|
|
assign X = Int ? PreprocA : PreprocX;
|
|
assign D = Int ? PreprocB : PreprocY;
|
|
assign intExp = zeroCntB - zeroCntA + 1;
|
|
assign intSign = Signed & (SrcA[`XLEN - 1] ^ SrcB[`XLEN - 1]);
|
|
endmodule
|
|
|
|
/////////////////////////////////
|
|
// Quotient Selection, Radix 2 //
|
|
/////////////////////////////////
|
|
module qsel2 ( // *** eventually just change to 4 bits
|
|
input logic [`DIVLEN+3:`DIVLEN] ps, pc,
|
|
output logic qp, qz, qm
|
|
);
|
|
|
|
logic [`DIVLEN+3:`DIVLEN] p, g;
|
|
logic magnitude, sign, cout;
|
|
|
|
// The quotient selection logic is presented for simplicity, not
|
|
// for efficiency. You can probably optimize your logic to
|
|
// select the proper divisor with less delay.
|
|
|
|
// Quotient equations from EE371 lecture notes 13-20
|
|
assign p = ps ^ pc;
|
|
assign g = ps & pc;
|
|
|
|
assign #1 magnitude = ~(&p[`DIVLEN+2:`DIVLEN]);
|
|
assign #1 cout = g[`DIVLEN+2] | (p[`DIVLEN+2] & (g[`DIVLEN+1] | p[`DIVLEN+1] & g[`DIVLEN]));
|
|
assign #1 sign = p[`DIVLEN+3] ^ cout;
|
|
/* assign #1 magnitude = ~((ps[54]^pc[54]) & (ps[53]^pc[53]) &
|
|
(ps[52]^pc[52]));
|
|
assign #1 sign = (ps[55]^pc[55])^
|
|
(ps[54] & pc[54] | ((ps[54]^pc[54]) &
|
|
(ps[53]&pc[53] | ((ps[53]^pc[53]) &
|
|
(ps[52]&pc[52]))))); */
|
|
|
|
// Produce quotient = +1, 0, or -1
|
|
assign #1 qp = magnitude & ~sign;
|
|
assign #1 qz = ~magnitude;
|
|
assign #1 qm = magnitude & sign;
|
|
endmodule
|
|
|
|
//////////
|
|
// qacc //
|
|
//////////
|
|
// To be replaced by OTFC
|
|
module qacc #(parameter N=68) (
|
|
input logic clk,
|
|
input logic req,
|
|
input logic qp, qz, qm,
|
|
output logic [N-1:0] rp, rm
|
|
);
|
|
|
|
flopr #(N) rmreg(clk, req, {rm[N-2:0], qm}, rm);
|
|
flopr #(N) rpreg(clk, req, {rp[N-2:0], qp}, rp);
|
|
/* always @(posedge clk)
|
|
begin
|
|
if (req)
|
|
begin
|
|
rp <= #1 0;
|
|
rm <= #1 0;
|
|
end
|
|
else
|
|
begin
|
|
rm <= #1 {rm[54:0], qm};
|
|
rp <= #1 {rp[54:0], qp};
|
|
end
|
|
end */
|
|
endmodule
|
|
|
|
///////////////////////////////////
|
|
// On-The-Fly Converter, Radix 2 //
|
|
///////////////////////////////////
|
|
module otfc2 #(parameter N=65) (
|
|
input logic clk,
|
|
input logic Start,
|
|
input logic qp, qz, qm,
|
|
output logic [N-1:0] r
|
|
);
|
|
|
|
// The on-the-fly converter transfers the quotient
|
|
// bits to the quotient as they come.
|
|
//
|
|
// This code follows the psuedocode presented in the
|
|
// floating point chapter of the book. Right now,
|
|
// it is written for Radix-2 division.
|
|
//
|
|
// QM is Q-1. It allows us to write negative bits
|
|
// without using a costly CPA.
|
|
logic [N+2:0] Q, QM, QNext, QMNext;
|
|
// QR and QMR are the shifted versions of Q and QM.
|
|
// They are treated as [N-1:r] size signals, and
|
|
// discard the r most significant bits of Q and QM.
|
|
logic [N+1:0] QR, QMR;
|
|
|
|
flopr #(N+3) Qreg(clk, Start, QNext, Q);
|
|
flopr #(N+3) QMreg(clk, Start, QMNext, QM);
|
|
|
|
always_comb begin
|
|
QR = Q[N+1:0];
|
|
QMR = QM[N+1:0]; // Shift Q and QM
|
|
if (qp) begin
|
|
QNext = {QR, 1'b1};
|
|
QMNext = {QR, 1'b0};
|
|
end else if (qz) begin
|
|
QNext = {QR, 1'b0};
|
|
QMNext = {QMR, 1'b1};
|
|
end else begin // If qp and qz are not true, then qm is
|
|
QNext = {QMR, 1'b1};
|
|
QMNext = {QMR, 1'b0};
|
|
end
|
|
end
|
|
assign r = Q[N+2] ? Q[N+1:2] : Q[N:1];
|
|
|
|
endmodule
|
|
|
|
/////////
|
|
// inv //
|
|
/////////
|
|
module inv(input logic [`DIVLEN+3:0] in,
|
|
output logic [`DIVLEN+3:0] out);
|
|
|
|
assign #1 out = ~in;
|
|
endmodule
|
|
|
|
//////////
|
|
// mux3 //
|
|
//////////
|
|
module mux3onehot #(parameter N=65) (
|
|
input logic [N+3:0] in0, in1, in2,
|
|
input logic sel0, sel1, sel2,
|
|
output logic [N+3:0] out
|
|
);
|
|
|
|
// lazy inspection of the selects
|
|
// really we should make sure selects are mutually exclusive
|
|
assign #1 out = sel0 ? in0 : (sel1 ? in1 : in2);
|
|
endmodule
|
|
|
|
|
|
/////////
|
|
// csa //
|
|
/////////
|
|
module csa #(parameter N=69) (
|
|
input logic [N-1:0] in1, in2, in3,
|
|
input logic cin,
|
|
output logic [N-1:0] out1, out2
|
|
);
|
|
|
|
// This block adds in1, in2, in3, and cin to produce
|
|
// a result out1 / out2 in carry-save redundant form.
|
|
// cin is just added to the least significant bit and
|
|
// is required to handle adding a negative divisor.
|
|
// Fortunately, the carry (out2) is shifted left by one
|
|
// bit, leaving room in the least significant bit to
|
|
// insert cin.
|
|
|
|
assign #1 out1 = in1 ^ in2 ^ in3;
|
|
assign #1 out2 = {in1[N-2:0] & (in2[N-2:0] | in3[N-2:0]) |
|
|
(in2[N-2:0] & in3[N-2:0]), cin};
|
|
endmodule
|
|
|
|
|
|
//////////////
|
|
// expcalc //
|
|
//////////////
|
|
module expcalc(
|
|
input logic [`NE-1:0] XExp, YExp,
|
|
output logic [`NE-1:0] calcExp
|
|
);
|
|
|
|
assign calcExp = XExp - YExp + (`NE)'(`BIAS);
|
|
|
|
endmodule
|
|
|
|
//////////////
|
|
// signcalc //
|
|
//////////////
|
|
module signcalc(
|
|
input logic XSign, YSign,
|
|
output logic calcSign
|
|
);
|
|
|
|
assign calcSign = XSign ^ YSign;
|
|
|
|
endmodule
|
|
|
|
////////////////////
|
|
// Postprocessing //
|
|
////////////////////
|
|
module srtpostproc (
|
|
input [`DIVLEN+2:0] rp, rm,
|
|
output [`DIVLEN-1:0] Quot
|
|
);
|
|
|
|
//assign Quot = rp - rm;
|
|
finaladd #(`DIVLEN+3) finaladd(rp, rm, Quot);
|
|
endmodule
|
|
|
|
//////////////
|
|
// finaladd //
|
|
//////////////
|
|
module finaladd #(parameter N=68) (
|
|
input logic [N-1:0] rp, rm,
|
|
output logic [N-4:0] r
|
|
);
|
|
|
|
logic [N-1:0] diff;
|
|
|
|
// this magic block performs the final addition for you
|
|
// to convert the positive and negative quotient digits
|
|
// into a normalized mantissa. It returns the 52 bit
|
|
// mantissa after shifting to guarantee a leading 1.
|
|
// You can assume this block operates in one cycle
|
|
// and do not need to budget it in your area and power
|
|
// calculations.
|
|
|
|
// Since no rounding is performed, the result may be too
|
|
// small by one unit in the least significant place (ulp).
|
|
// The checker ignores such an error.
|
|
|
|
assign #1 diff = rp - rm;
|
|
assign #1 r = diff[N-1] ? diff[N-2:2] : diff[N-3:1];
|
|
endmodule
|
|
|