cvw/pipelined/srt/srt.sv

367 lines
11 KiB
Systemverilog

///////////////////////////////////////////
// srt.sv
//
// Written: David_Harris@hmc.edu 13 January 2022
// Modified:
//
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
`define DIVLEN ((`NF<(`XLEN+1)) ? (`XLEN + 1) : `NF)
`define EXTRAFRACBITS ((`NF<(`XLEN+1)) ? (`XLEN - `NF + 1) : 0)
`define EXTRAINTBITS ((`NF<(`XLEN+1)) ? 0 : (`NF - `XLEN))
module srt (
input logic clk,
input logic Start,
input logic Stall, // *** multiple pipe stages
input logic Flush, // *** multiple pipe stages
// Floating Point Inputs
// later add exponents, signs, special cases
input logic XSign, YSign,
input logic [`NE-1:0] XExp, YExp,
input logic [`NF-1:0] SrcXFrac, SrcYFrac,
input logic [`XLEN-1:0] SrcA, SrcB,
input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit
input logic W64, // 32-bit ints on XLEN=64
input logic Signed, // Interpret integers as signed 2's complement
input logic Int, // Choose integer inputs
input logic Sqrt, // perform square root, not divide
output logic rsign,
output logic [`DIVLEN-1:0] Quot, Rem, QuotOTFC, // *** later handle integers
output logic [`NE-1:0] rExp,
output logic [3:0] Flags
);
logic qp, qz, qm; // quotient is +1, 0, or -1
logic [`NE-1:0] calcExp;
logic calcSign;
logic [`DIVLEN-1:0] X, Dpreproc;
logic [`DIVLEN+3:0] WS, WSA, WSN, WC, WCA, WCN, D, Db, Dsel;
logic [`DIVLEN+2:0] rp, rm;
logic [$clog2(`XLEN+1)-1:0] intExp;
logic intSign;
srtpreproc preproc(SrcA, SrcB, SrcXFrac, SrcYFrac, Fmt, W64, Signed, Int, Sqrt, X, Dpreproc, intExp, intSign);
// Top Muxes and Registers
// When start is asserted, the inputs are loaded into the divider.
// Otherwise, the divisor is retained and the partial remainder
// is fed back for the next iteration.
mux2 #(`DIVLEN+4) wsmux({WSA[`DIVLEN+2:0], 1'b0}, {4'b0001, X}, Start, WSN);
flop #(`DIVLEN+4) wsflop(clk, WSN, WS);
mux2 #(`DIVLEN+4) wcmux({WCA[`DIVLEN+2:0], 1'b0}, {(`DIVLEN+4){1'b0}}, Start, WCN);
flop #(`DIVLEN+4) wcflop(clk, WCN, WC);
flopen #(`DIVLEN+4) dflop(clk, Start, {4'b0001, Dpreproc}, D);
// Quotient Selection logic
// Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
qsel2 qsel2(WS[`DIVLEN+3:`DIVLEN], WC[`DIVLEN+3:`DIVLEN], qp, qz, qm);
// Accumulate quotient digits in a shift register (now done in OTFC)
qacc #(`DIVLEN+3) qacc(clk, Start, qp, qz, qm, rp, rm);
flopen #(`NE) expflop(clk, Start, calcExp, rExp);
flopen #(1) signflop(clk, Start, calcSign, rsign);
// Divisor Selection logic
inv dinv(D, Db);
mux3onehot #(`DIVLEN) divisorsel(Db, {(`DIVLEN+4){1'b0}}, D, qp, qz, qm, Dsel);
// Partial Product Generation
csa #(`DIVLEN+4) csa(WS, WC, Dsel, qp, WSA, WCA);
otfc2 #(`DIVLEN) otfc2(clk, Start, qp, qz, qm, QuotOTFC);
expcalc expcalc(.XExp, .YExp, .calcExp);
signcalc signcalc(.XSign, .YSign, .calcSign);
srtpostproc postproc(rp, rm, Quot);
endmodule
////////////////
// Submodules //
////////////////
///////////////////
// Preprocessing //
///////////////////
module srtpreproc (
input logic [`XLEN-1:0] SrcA, SrcB,
input logic [`NF-1:0] SrcXFrac, SrcYFrac,
input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit
input logic W64, // 32-bit ints on XLEN=64
input logic Signed, // Interpret integers as signed 2's complement
input logic Int, // Choose integer inputs
input logic Sqrt, // perform square root, not divide
output logic [`DIVLEN-1:0] X, D,
output logic [$clog2(`XLEN+1)-1:0] intExp, // Quotient integer exponent
output logic intSign // Quotient integer sign
);
logic [$clog2(`XLEN+1)-1:0] zeroCntA, zeroCntB;
logic [`XLEN-1:0] PosA, PosB;
logic [`DIVLEN-1:0] ExtraA, ExtraB, PreprocA, PreprocB, PreprocX, PreprocY;
assign PosA = (Signed & SrcA[`XLEN - 1]) ? -SrcA : SrcA;
assign PosB = (Signed & SrcB[`XLEN - 1]) ? -SrcB : SrcB;
lzc #(`XLEN) lzcA (PosA, zeroCntA);
lzc #(`XLEN) lzcB (PosB, zeroCntB);
assign ExtraA = {1'b0, PosA, {`EXTRAINTBITS{1'b0}}};
assign ExtraB = {1'b0, PosB, {`EXTRAINTBITS{1'b0}}};
assign PreprocA = ExtraA << zeroCntA;
assign PreprocB = ExtraB << (zeroCntB + 1);
assign PreprocX = {SrcXFrac, {`EXTRAFRACBITS{1'b0}}};
assign PreprocY = {SrcYFrac, {`EXTRAFRACBITS{1'b0}}};
assign X = Int ? PreprocA : PreprocX;
assign D = Int ? PreprocB : PreprocY;
assign intExp = zeroCntB - zeroCntA + 1;
assign intSign = Signed & (SrcA[`XLEN - 1] ^ SrcB[`XLEN - 1]);
endmodule
/////////////////////////////////
// Quotient Selection, Radix 2 //
/////////////////////////////////
module qsel2 ( // *** eventually just change to 4 bits
input logic [`DIVLEN+3:`DIVLEN] ps, pc,
output logic qp, qz, qm
);
logic [`DIVLEN+3:`DIVLEN] p, g;
logic magnitude, sign, cout;
// The quotient selection logic is presented for simplicity, not
// for efficiency. You can probably optimize your logic to
// select the proper divisor with less delay.
// Quotient equations from EE371 lecture notes 13-20
assign p = ps ^ pc;
assign g = ps & pc;
assign #1 magnitude = ~(&p[`DIVLEN+2:`DIVLEN]);
assign #1 cout = g[`DIVLEN+2] | (p[`DIVLEN+2] & (g[`DIVLEN+1] | p[`DIVLEN+1] & g[`DIVLEN]));
assign #1 sign = p[`DIVLEN+3] ^ cout;
/* assign #1 magnitude = ~((ps[54]^pc[54]) & (ps[53]^pc[53]) &
(ps[52]^pc[52]));
assign #1 sign = (ps[55]^pc[55])^
(ps[54] & pc[54] | ((ps[54]^pc[54]) &
(ps[53]&pc[53] | ((ps[53]^pc[53]) &
(ps[52]&pc[52]))))); */
// Produce quotient = +1, 0, or -1
assign #1 qp = magnitude & ~sign;
assign #1 qz = ~magnitude;
assign #1 qm = magnitude & sign;
endmodule
//////////
// qacc //
//////////
// To be replaced by OTFC
module qacc #(parameter N=68) (
input logic clk,
input logic req,
input logic qp, qz, qm,
output logic [N-1:0] rp, rm
);
flopr #(N) rmreg(clk, req, {rm[N-2:0], qm}, rm);
flopr #(N) rpreg(clk, req, {rp[N-2:0], qp}, rp);
/* always @(posedge clk)
begin
if (req)
begin
rp <= #1 0;
rm <= #1 0;
end
else
begin
rm <= #1 {rm[54:0], qm};
rp <= #1 {rp[54:0], qp};
end
end */
endmodule
///////////////////////////////////
// On-The-Fly Converter, Radix 2 //
///////////////////////////////////
module otfc2 #(parameter N=65) (
input logic clk,
input logic Start,
input logic qp, qz, qm,
output logic [N-1:0] r
);
// The on-the-fly converter transfers the quotient
// bits to the quotient as they come.
//
// This code follows the psuedocode presented in the
// floating point chapter of the book. Right now,
// it is written for Radix-2 division.
//
// QM is Q-1. It allows us to write negative bits
// without using a costly CPA.
logic [N+2:0] Q, QM, QNext, QMNext;
// QR and QMR are the shifted versions of Q and QM.
// They are treated as [N-1:r] size signals, and
// discard the r most significant bits of Q and QM.
logic [N+1:0] QR, QMR;
flopr #(N+3) Qreg(clk, Start, QNext, Q);
flopr #(N+3) QMreg(clk, Start, QMNext, QM);
always_comb begin
QR = Q[N+1:0];
QMR = QM[N+1:0]; // Shift Q and QM
if (qp) begin
QNext = {QR, 1'b1};
QMNext = {QR, 1'b0};
end else if (qz) begin
QNext = {QR, 1'b0};
QMNext = {QMR, 1'b1};
end else begin // If qp and qz are not true, then qm is
QNext = {QMR, 1'b1};
QMNext = {QMR, 1'b0};
end
end
assign r = Q[N+2] ? Q[N+1:2] : Q[N:1];
endmodule
/////////
// inv //
/////////
module inv(input logic [`DIVLEN+3:0] in,
output logic [`DIVLEN+3:0] out);
assign #1 out = ~in;
endmodule
//////////
// mux3 //
//////////
module mux3onehot #(parameter N=65) (
input logic [N+3:0] in0, in1, in2,
input logic sel0, sel1, sel2,
output logic [N+3:0] out
);
// lazy inspection of the selects
// really we should make sure selects are mutually exclusive
assign #1 out = sel0 ? in0 : (sel1 ? in1 : in2);
endmodule
/////////
// csa //
/////////
module csa #(parameter N=69) (
input logic [N-1:0] in1, in2, in3,
input logic cin,
output logic [N-1:0] out1, out2
);
// This block adds in1, in2, in3, and cin to produce
// a result out1 / out2 in carry-save redundant form.
// cin is just added to the least significant bit and
// is required to handle adding a negative divisor.
// Fortunately, the carry (out2) is shifted left by one
// bit, leaving room in the least significant bit to
// insert cin.
assign #1 out1 = in1 ^ in2 ^ in3;
assign #1 out2 = {in1[N-2:0] & (in2[N-2:0] | in3[N-2:0]) |
(in2[N-2:0] & in3[N-2:0]), cin};
endmodule
//////////////
// expcalc //
//////////////
module expcalc(
input logic [`NE-1:0] XExp, YExp,
output logic [`NE-1:0] calcExp
);
assign calcExp = XExp - YExp + (`NE)'(`BIAS);
endmodule
//////////////
// signcalc //
//////////////
module signcalc(
input logic XSign, YSign,
output logic calcSign
);
assign calcSign = XSign ^ YSign;
endmodule
////////////////////
// Postprocessing //
////////////////////
module srtpostproc (
input [`DIVLEN+2:0] rp, rm,
output [`DIVLEN-1:0] Quot
);
//assign Quot = rp - rm;
finaladd #(`DIVLEN+3) finaladd(rp, rm, Quot);
endmodule
//////////////
// finaladd //
//////////////
module finaladd #(parameter N=68) (
input logic [N-1:0] rp, rm,
output logic [N-4:0] r
);
logic [N-1:0] diff;
// this magic block performs the final addition for you
// to convert the positive and negative quotient digits
// into a normalized mantissa. It returns the 52 bit
// mantissa after shifting to guarantee a leading 1.
// You can assume this block operates in one cycle
// and do not need to budget it in your area and power
// calculations.
// Since no rounding is performed, the result may be too
// small by one unit in the least significant place (ulp).
// The checker ignores such an error.
assign #1 diff = rp - rm;
assign #1 r = diff[N-1] ? diff[N-2:2] : diff[N-3:1];
endmodule