cvw/fma/fma16.sv

150 lines
3.9 KiB
Systemverilog

// fma16.sv
// David_Harris@hmc.edu 26 February 2022
// 16-bit floating-point multiply-accumulate
// Operation: general purpose multiply, add, fma, with optional negation
// If mul=1, p = x * y. Else p = x.
// If add=1, result = p + z. Else result = p.
// If negp or negz = 1, negate p or z to handle negations and subtractions
// fadd: mul = 0, add = 1, negp = negz = 0
// fsub: mul = 0, add = 1, negp = 0, negz = 1
// fmul: mul = 1, add = 0, negp = 0, negz = 0
// fma: mul = 1, add = 1, negp = 0, negz = 0
module fma16(
input logic [15:0] x, y, z,
input logic mul, add, negp, negz,
input logic [1:0] roundmode, // 00: rz, 01: rne, 10: rp, 11: rn
output logic [15:0] result);
logic [10:0] xm, ym, zm;
logic [4:0] xe, ye, ze;
logic xs, ys, zs;
logic zs1; // sign before optional negation
logic [21:0] pm;
logic [5:0] pe;
logic ps; // sign of product
logic [22:0] rm;
logic [6:0] re;
logic rs;
unpack unpack(x, y, z, xm, ym, zm, xe, ye, ze, xs, ys, zs1); // unpack inputs
signadj signadj(negp, negz, xs, ys, zs1, ps, zs); // handle negations
mult m(mul, xm, ym, xe, ye, pm, pe); // p = x * y
add a(add, pm, zm, pe, ze, ps, zs, rm, re, rs); // r = z + p
postproc post(roundmode, rm, re, rs, result); // normalize, round, pack
endmodule
module mult(
input logic mul,
input logic [10:0] xm, ym,
input logic [4:0] xe, ye,
output logic [21:0] pm,
output logic [5:0] pe);
// only multiply if mul = 1
assign pm = mul ? xm * ym : {1'b0, xm, 10'b0}; // multiply mantiassas
assign pe = mul ? xe + ye : {1'b0, xe};
endmodule
module add(
input logic add,
input logic [21:0] pm,
input logic [10:0] zm,
input logic [5:0] pe,
input logic [4:0] ze,
input logic ps, zs,
output logic [22:0] rm,
output logic [6:0] re,
output logic rs);
logic [22:0] arm;
logic [6:0] are;
logic ars;
/*
alignshift as(pe, ze, zm, zmaligned);
condneg cnp(pm, ps, pmn);
condneg cnz(zm, zs, zmn);
assign
*/
// add or pass product through
assign rm = add ? arm : {1'b0, pm};
assign re = add ? are : {1'b0, pe};
assign rs = add ? ars : ps;
endmodule
module postproc(
input logic [1:0] roundmode,
input logic [22:0] rm,
input logic [6:0] re,
input logic rs,
output logic [15:0] result);
logic [9:0] uf, uff;
logic [6:0] ue;
logic [6:0] ueb, uebiased;
always_comb
if (rm[21]) begin // normalization right shift by 1 and bump up exponent;
ue = re + 7'b1;
uf = rm[20:11];
end else begin // no normalization shift needed
ue = re;
uf = rm[19:10];
end
// overflow
always_comb begin
ueb = ue-7'd15;
if (ue >= 7'd46) begin // overflow
/* uebiased = 7'd30;
uff = 10'h3ff; */
end else begin
uebiased = ue-7'd15;
uff = uf;
end
end
assign result = {rs, uebiased[4:0], uff};
// add special case handling for zeros, NaN, Infinity
endmodule
module signadj(
input logic negx, negz,
input logic xs, ys, zs1,
output logic ps, zs);
assign ps = xs ^ ys ^ negx; // sign of product
assign zs = zs1 ^ negz; //
endmodule
module unpack(
input logic [15:0] x, y, z,
output logic [10:0] xm, ym, zm,
output logic [4:0] xe, ye, ze,
output logic xs, ys, zs);
unpacknum upx(x, xm, xe, xs);
unpacknum upy(y, ym, ye, ys);
unpacknum upz(z, zm, ze, zs);
endmodule
module unpacknum(
input logic [15:0] num,
output logic [10:0] m,
output logic [4:0] e,
output logic s);
logic [9:0] f; // fraction without leading 1
logic [4:0] eb; // biased exponent
assign {s, eb, f} = num; // pull bit fields out of floating-point number
assign m = {1'b1, f}; // prepend leading 1 to fraction
assign e = eb; // leave bias in exponent ***
endmodule