cvw/pipelined/src/ifu/bpred.sv
2023-01-08 23:46:53 -06:00

250 lines
13 KiB
Systemverilog

///////////////////////////////////////////
// bpred.sv
//
// Written: Ross Thomposn
// Email: ross1728@gmail.com
// Created: February 12, 2021
// Modified:
//
// Purpose: Branch prediction unit
// Produces a branch prediction based on branch history.
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module bpred (
input logic clk, reset,
input logic StallF, StallD, StallE, StallM, StallW,
input logic FlushD, FlushE, FlushM, FlushW,
// Fetch stage
// the prediction
input logic [31:0] InstrD, // Decompressed decode stage instruction
input logic [`XLEN-1:0] PCNextF, // Next Fetch Address
input logic [`XLEN-1:0] PCPlus2or4F, // PCF+2/4
output logic [`XLEN-1:0] PCNext1F, // Branch Predictor predicted or corrected fetch address on miss prediction
output logic [`XLEN-1:0] NextValidPCE, // Address of next valid instruction after the instruction in the Memory stage.
// Update Predictor
input logic [`XLEN-1:0] PCF, // Fetch stage instruction address.
input logic [`XLEN-1:0] PCD, // Decode stage instruction address. Also the address the branch predictor took.
input logic [`XLEN-1:0] PCE, // Execution stage instruction address.
input logic [`XLEN-1:0] PCM, // Memory stage instruction address.
// *** after reviewing the compressed instruction set I am leaning towards having the btb predict the instruction class.
// *** the specifics of how this is encode is subject to change.
input logic PCSrcE, // Executation stage branch is taken
input logic [`XLEN-1:0] IEUAdrE, // The branch/jump target address
input logic [`XLEN-1:0] PCLinkE, // The address following the branch instruction. (AKA Fall through address)
output logic [4:0] InstrClassM, // The valid instruction class. 1-hot encoded as jalr, ret, jr (not ret), j, br
// Report branch prediction status
output logic BPPredWrongE, // Prediction is wrong.
output logic DirPredictionWrongM, // Prediction direction is wrong.
output logic BTBPredPCWrongM, // Prediction target wrong.
output logic RASPredPCWrongM, // RAS prediction is wrong.
output logic PredictionInstrClassWrongM // Class prediction is wrong.
);
logic BTBValidF;
logic [1:0] DirPredictionF;
logic [4:0] BPInstrClassF, BPInstrClassD, BPInstrClassE;
logic [`XLEN-1:0] BTBPredPCF, RASPCF;
logic TargetWrongE;
logic FallThroughWrongE;
logic PredictionPCWrongE;
logic PredictionInstrClassWrongE;
logic [4:0] InstrClassD, InstrClassE, InstrClassW;
logic DirPredictionWrongE, BTBPredPCWrongE, RASPredPCWrongE, BPPredClassNonCFIWrongE;
logic SelBPPredF;
logic [`XLEN-1:0] BPPredPCF;
logic BPPredWrongM;
logic [`XLEN-1:0] PCNext0F;
logic [`XLEN-1:0] PCCorrectE;
// Part 1 branch direction prediction
// look into the 2 port Sram model. something is wrong.
if (`BPTYPE == "BPTWOBIT") begin:Predictor
twoBitPredictor DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .FlushD, .FlushE, .FlushM,
.PCNextF, .PCM, .DirPredictionF, .DirPredictionWrongE,
.BranchInstrE(InstrClassE[0]), .BranchInstrM(InstrClassM[0]), .PCSrcE);
end else if (`BPTYPE == "BPGLOBAL") begin:Predictor
globalhistory DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .FlushD, .FlushE, .FlushM,
.PCNextF, .PCM, .DirPredictionF, .DirPredictionWrongE,
.BranchInstrE(InstrClassE[0]), .BranchInstrM(InstrClassM[0]), .PCSrcE);
end else if (`BPTYPE == "BPSPECULATIVEGLOBAL") begin:Predictor
speculativeglobalhistory #(10) DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .StallW, .FlushD, .FlushE, .FlushM, .FlushW,
.PCNextF, .PCF, .PCD, .PCE, .PCM, .DirPredictionF, .DirPredictionWrongE,
.BranchInstrF(BPInstrClassF[0]), .BranchInstrD(BPInstrClassD[0]), .BranchInstrE(InstrClassE[0]), .BranchInstrM(InstrClassM[0]),
.BranchInstrW(InstrClassW[0]), .PCSrcE);
end else if (`BPTYPE == "BPGSHARE") begin:Predictor
gshare DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .FlushD, .FlushE, .FlushM,
.PCNextF, .PCM, .DirPredictionF, .DirPredictionWrongE,
.BranchInstrE(InstrClassE[0]), .BranchInstrM(InstrClassM[0]), .PCSrcE);
end else if (`BPTYPE == "BPSPECULATIVEGSHARE") begin:Predictor
speculativegshare DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .StallW, .FlushD, .FlushE, .FlushM, .FlushW,
.PCNextF, .PCF, .PCD, .PCE, .PCM, .DirPredictionF, .DirPredictionWrongE,
.BranchInstrF(BPInstrClassF[0]), .BranchInstrD(BPInstrClassD[0]), .BranchInstrE(InstrClassE[0]), .BranchInstrM(InstrClassM[0]),
.BranchInstrW(InstrClassW[0]), .PCSrcE);
end else if (`BPTYPE == "BPOLDGSHARE") begin:Predictor
oldgsharepredictor DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .StallW, .FlushD, .FlushE, .FlushM, .FlushW,
.PCNextF, .PCF, .PCD, .PCE, .PCM, .DirPredictionF, .DirPredictionWrongE,
.BPInstrClassF, .BPInstrClassD, .BPInstrClassE,
.InstrClassE, .PCSrcE);
end else if (`BPTYPE == "BPOLDGSHARE2") begin:Predictor
oldgsharepredictor2 DirPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .StallW, .FlushD, .FlushE, .FlushM, .FlushW,
.PCNextF, .PCF, .PCD, .PCE, .PCM, .DirPredictionF, .DirPredictionWrongE,
.BPInstrClassF, .BPInstrClassD, .BPInstrClassE,
.InstrClassE, .PCSrcE);
end else if (`BPTYPE == "BPLOCALPAg") begin:Predictor
// *** Fix me
/* -----\/----- EXCLUDED -----\/-----
localHistoryPredictor DirPredictor(.clk,
.reset, .StallF, .StallE,
.LookUpPC(PCNextF),
.Prediction(DirPredictionF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
.PCSrcE,
.UpdatePrediction(InstrClassE[0]));
-----/\----- EXCLUDED -----/\----- */
end
// this predictor will have two pieces of data,
// 1) A direction (1 = Taken, 0 = Not Taken)
// 2) Any information which is necessary for the predictor to build its next state.
// For a 2 bit table this is the prediction count.
assign SelBPPredF = ((BPInstrClassF[0] & DirPredictionF[1] & BTBValidF) |
BPInstrClassF[3] |
(BPInstrClassF[2] & BTBValidF) |
BPInstrClassF[1] & BTBValidF) ;
// Part 2 Branch target address prediction
// *** For now the BTB will house the direct and indirect targets
// *** getting to many false positivies from the BTB, we need a partial TAG to reduce this.
BTBPredictor TargetPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.TargetPC(BTBPredPCF),
.InstrClass(BPInstrClassF),
.Valid(BTBValidF),
// update
.UpdateEN((|InstrClassE | (PredictionInstrClassWrongE)) & ~StallE),
.UpdatePC(PCE),
.UpdateTarget(IEUAdrE),
.UpdateInvalid(PredictionInstrClassWrongE),
.UpdateInstrClass(InstrClassE));
// Part 3 RAS
// *** need to add the logic to restore RAS on flushes. We will use incr for this.
RASPredictor RASPredictor(.clk(clk),
.reset(reset),
.pop(BPInstrClassF[3] & ~StallF),
.popPC(RASPCF),
.push(InstrClassE[4] & ~StallE),
.incr(1'b0),
.pushPC(PCLinkE));
assign BPPredPCF = BPInstrClassF[3] ? RASPCF : BTBPredPCF;
// the branch predictor needs a compact decoding of the instruction class.
// *** consider adding in the alternate return address x5 for returns.
assign InstrClassD[4] = (InstrD[6:0] & 7'h77) == 7'h67 & (InstrD[11:07] & 5'h1B) == 5'h01; // jal(r) must link to ra or r5
assign InstrClassD[3] = InstrD[6:0] == 7'h67 & (InstrD[19:15] & 5'h1B) == 5'h01; // return must return to ra or r5
assign InstrClassD[2] = InstrD[6:0] == 7'h67 & (InstrD[19:15] & 5'h1B) != 5'h01 & (InstrD[11:7] & 5'h1B) != 5'h01; // jump register, but not return
assign InstrClassD[1] = InstrD[6:0] == 7'h6F & (InstrD[11:7] & 5'h1B) != 5'h01; // jump, RD != x1 or x5
assign InstrClassD[0] = InstrD[6:0] == 7'h63; // branch
flopenrc #(5) InstrClassRegE(clk, reset, FlushE, ~StallE, InstrClassD, InstrClassE);
flopenrc #(5) InstrClassRegM(clk, reset, FlushM, ~StallM, InstrClassE, InstrClassM);
flopenrc #(5) InstrClassRegW(clk, reset, FlushW, ~StallW, InstrClassM, InstrClassW);
flopenrc #(1) BPPredWrongMReg(clk, reset, FlushM, ~StallM, BPPredWrongE, BPPredWrongM);
// branch predictor
flopenrc #(4) BPPredWrongRegM(clk, reset, FlushM, ~StallM,
{DirPredictionWrongE, BTBPredPCWrongE, RASPredPCWrongE, PredictionInstrClassWrongE},
{DirPredictionWrongM, BTBPredPCWrongM, RASPredPCWrongM, PredictionInstrClassWrongM});
// pipeline the class
flopenrc #(5) BPInstrClassRegD(clk, reset, FlushD, ~StallD, BPInstrClassF, BPInstrClassD);
flopenrc #(5) BPInstrClassRegE(clk, reset, FlushE, ~StallE, BPInstrClassD, BPInstrClassE);
// Check the prediction
// first check if the target or fallthrough address matches what was predicted.
assign TargetWrongE = IEUAdrE != PCD;
assign FallThroughWrongE = PCLinkE != PCD;
// If the target is taken check the target rather than fallthrough. The instruction needs to be a branch if PCSrcE is selected
// Remember the bpred can incorrectly predict a non cfi instruction as a branch taken. If the real instruction is non cfi
// it must have selected the fall through.
assign PredictionPCWrongE = (PCSrcE & (|InstrClassE) ? TargetWrongE : FallThroughWrongE);
// The branch direction also need to checked.
// However if the direction is wrong then the pc will be wrong. This is only relavent to checking the
// accuracy of the direciton prediction.
//assign DirPredictionWrongE = (BPPredE[1] ^ PCSrcE) & InstrClassE[0];
// Finally we need to check if the class is wrong. When the class is wrong the BTB needs to be updated.
// Also we want to track this in a performance counter.
assign PredictionInstrClassWrongE = InstrClassE != BPInstrClassE;
// We want to output to the instruction fetch if the PC fetched was wrong. If by chance the predictor was wrong about
// the direction or class, but correct about the target we don't have the flush the pipeline. However we still
// need this information to verify the accuracy of the predictors.
assign BPPredWrongE = (PredictionPCWrongE & |InstrClassE) | BPPredClassNonCFIWrongE;
// If we have a jump, jump register or jal or jalr and the PC is wrong we need to increment the performance counter.
assign BTBPredPCWrongE = (InstrClassE[4] | InstrClassE[2] | InstrClassE[1]) & PredictionPCWrongE;
// similar with RAS
assign RASPredPCWrongE = InstrClassE[3] & PredictionPCWrongE;
// Finally if the real instruction class is non CFI but the predictor said it was we need to count.
assign BPPredClassNonCFIWrongE = PredictionInstrClassWrongE & ~|InstrClassE;
// Selects the BP or PC+2/4.
mux2 #(`XLEN) pcmux0(PCPlus2or4F, BPPredPCF, SelBPPredF, PCNext0F);
// If the prediction is wrong select the correct address.
mux2 #(`XLEN) pcmux1(PCNext0F, PCCorrectE, BPPredWrongE, PCNext1F);
// Correct branch/jump target.
mux2 #(`XLEN) pccorrectemux(PCLinkE, IEUAdrE, PCSrcE, PCCorrectE);
// If the fence/csrw was predicted as a taken branch then we select PCF, rather PCE.
// Effectively this is PCM+4 or the non-existant PCLinkM
// if(`BPCLASS) begin
mux2 #(`XLEN) pcmuxBPWrongInvalidateFlush(PCE, PCF, BPPredWrongM, NextValidPCE);
// end else begin
// assign NextValidPCE = PCE;
// end
endmodule