cvw/wally-pipelined/src/mmu/pagetablewalker.sv

245 lines
12 KiB
Systemverilog

///////////////////////////////////////////
// pagetablewalker.sv
//
// Written: tfleming@hmc.edu 2 March 2021
// Modified: kmacsaigoren@hmc.edu 1 June 2021
// implemented SV48 on top of SV39. This included, adding a level of the FSM for the extra page number segment
// adding support for terapage encoding, and for setting the TranslationPAdr using the new level,
// adding the internal SvMode signal
//
// Purpose: Page Table Walker
// Part of the Memory Management Unit (MMU)
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module pagetablewalker
(
// Control signals
input logic clk, reset,
input logic [`XLEN-1:0] SATP_REGW,
// Signals from TLBs (addresses to translate)
input logic [`XLEN-1:0] PCF, MemAdrM,
input logic ITLBMissF, DTLBMissM,
input logic [1:0] MemRWM,
// Outputs to the TLBs (PTEs to write)
output logic [`XLEN-1:0] PTE, //PageTableEntryM,
output logic [1:0] PageType,
output logic ITLBWriteF, DTLBWriteM,
output logic SelPTW,
// *** modify to send to LSU // *** KMG: These are inputs/results from the ahblite whose addresses should have already been checked, so I don't think they need to be sent through the LSU
input logic [`XLEN-1:0] HPTWReadPTE,
input logic HPTWStall,
// *** modify to send to LSU
output logic [`XLEN-1:0] HPTWPAdrE, // this probalby should be `PA_BITS wide
output logic [`XLEN-1:0] HPTWPAdrM, // this probalby should be `PA_BITS wide
output logic HPTWRead,
// Faults
output logic WalkerInstrPageFaultF,
output logic WalkerLoadPageFaultM,
output logic WalkerStorePageFaultM
);
generate
if (`MEM_VIRTMEM) begin
// Internal signals
logic DTLBWalk; // register TLBs translation miss requests
logic [`PPN_BITS-1:0] BasePageTablePPN;
logic [`XLEN-1:0] TranslationVAdr;
logic [`PA_BITS-1:0] TranslationPAdr;
logic [`PPN_BITS-1:0] CurrentPPN;
logic MemWrite;
logic Executable, Writable, Readable, Valid;
logic MegapageMisaligned, GigapageMisaligned, TerapageMisaligned;
logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE;
logic StartWalk;
logic EndWalk;
logic PRegEn;
logic [1:0] NextPageType;
logic [`SVMODE_BITS-1:0] SvMode;
typedef enum {LEVEL0_SET_ADR, LEVEL0_READ, LEVEL0,
LEVEL1_SET_ADR, LEVEL1_READ, LEVEL1,
LEVEL2_SET_ADR, LEVEL2_READ, LEVEL2,
LEVEL3_SET_ADR, LEVEL3_READ, LEVEL3,
LEAF, IDLE, FAULT} statetype;
statetype WalkerState, NextWalkerState, InitialWalkerState;
// Extract bits from CSRs and inputs
assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS];
assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0];
assign MemWrite = MemRWM[0];
// Determine which address to translate
assign TranslationVAdr = DTLBWalk ? MemAdrM : PCF;
flop #(`XLEN) HPTWPAdrMReg(clk, HPTWPAdrE, HPTWPAdrM);
flopenrc #(1) TLBMissMReg(clk, reset, EndWalk, StartWalk | EndWalk, DTLBMissM, DTLBWalk);
flopenl #(.TYPE(statetype)) WalkerStateReg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState);
flopenr #(`XLEN) PTEReg(clk, reset, PRegEn, HPTWReadPTE, PTE); // Capture page table entry from data cache
assign CurrentPPN = PTE[`PPN_BITS+9:10];
// Assign PTE descriptors common across all XLEN values
// For non-leaf PTEs, D, A, U bits are reserved and ignored. They do not cause faults while walking the page table
assign {Executable, Writable, Readable, Valid} = PTE[3:0];
assign LeafPTE = Executable | Writable | Readable;
assign ValidPTE = Valid && ~(Writable && ~Readable);
assign ValidLeafPTE = ValidPTE & LeafPTE;
assign ValidNonLeafPTE = ValidPTE & ~LeafPTE;
// Enable and select signals based on states
assign StartWalk = (WalkerState == IDLE) & (DTLBMissM | ITLBMissF);
assign EndWalk = (WalkerState == LEAF) || (WalkerState == FAULT);
assign PRegEn = (NextWalkerState == LEVEL3) | (NextWalkerState == LEVEL2) | (NextWalkerState == LEVEL1) | (NextWalkerState == LEVEL0);
assign HPTWRead = (WalkerState == LEVEL3_READ) | (WalkerState == LEVEL2_READ) | (WalkerState == LEVEL1_READ) | (WalkerState == LEVEL0_READ);
assign SelPTW = (WalkerState != IDLE) & (WalkerState != FAULT);
assign DTLBWriteM = (WalkerState == LEAF) & DTLBWalk;
assign ITLBWriteF = (WalkerState == LEAF) & ~DTLBWalk;
// Raise faults. DTLBMiss
assign WalkerInstrPageFaultF = (WalkerState == FAULT) & ~DTLBWalk;
assign WalkerLoadPageFaultM = (WalkerState == FAULT) & DTLBWalk & ~MemWrite;
assign WalkerStorePageFaultM = (WalkerState == FAULT) & DTLBWalk & MemWrite;
// FSM to track PageType based on the levels of the page table traversed
flopr #(2) PageTypeReg(clk, reset, NextPageType, PageType);
always_comb
case (WalkerState)
LEVEL3: NextPageType = 2'b11; // terapage
LEVEL2: NextPageType = 2'b10; // gigapage
LEVEL1: NextPageType = 2'b01; // megapage
LEVEL0: NextPageType = 2'b00; // kilopage
default: NextPageType = PageType;
endcase
// TranslationPAdr mux
if (`XLEN==32) begin
logic [9:0] VPN1, VPN0;
assign VPN1 = TranslationVAdr[31:22];
assign VPN0 = TranslationVAdr[21:12];
always_comb
case (WalkerState)
LEVEL1_SET_ADR: TranslationPAdr = {BasePageTablePPN, VPN1, 2'b00};
LEVEL1_READ: TranslationPAdr = {BasePageTablePPN, VPN1, 2'b00};
LEVEL1: if (NextWalkerState == LEAF) TranslationPAdr = {2'b00, TranslationVAdr[31:0]}; // ***check this and similar in LEVEL0 and LEAF
else TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
LEVEL0_SET_ADR: TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
LEVEL0_READ: TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
LEVEL0: TranslationPAdr = {2'b00, TranslationVAdr[31:0]};
LEAF: TranslationPAdr = {2'b00, TranslationVAdr[31:0]};
default: TranslationPAdr = 0; // cause seg fault if this is improperly used
endcase
end else begin
logic [8:0] VPN3, VPN2, VPN1, VPN0;
assign VPN3 = TranslationVAdr[47:39];
assign VPN2 = TranslationVAdr[38:30];
assign VPN1 = TranslationVAdr[29:21];
assign VPN0 = TranslationVAdr[20:12];
always_comb
case (WalkerState)
LEVEL3_SET_ADR: TranslationPAdr = {BasePageTablePPN, VPN3, 3'b000};
LEVEL3_READ: TranslationPAdr = {BasePageTablePPN, VPN3, 3'b000};
LEVEL3: if (NextWalkerState == LEAF) TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
else TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
LEVEL2_SET_ADR: TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
LEVEL2_READ: TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
LEVEL2: if (NextWalkerState == LEAF) TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
else TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
LEVEL1_SET_ADR: TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
LEVEL1_READ: TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
LEVEL1: if (NextWalkerState == LEAF) TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
else TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
LEVEL0_SET_ADR: TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
LEVEL0_READ: TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
LEVEL0: TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
LEAF: TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
default: TranslationPAdr = 0; // cause seg fault if this is improperly used
endcase
end
if (`XLEN == 32) begin
assign InitialWalkerState = LEVEL1_SET_ADR;
assign TerapageMisaligned = 0; // not applicable
assign GigapageMisaligned = 0; // not applicable
assign MegapageMisaligned = |(CurrentPPN[9:0]); // must have zero PPN0
assign HPTWPAdrE = TranslationPAdr[31:0]; // ***not right?
end else begin
assign InitialWalkerState = (SvMode == `SV48) ? LEVEL3_SET_ADR : LEVEL2_SET_ADR;
assign TerapageMisaligned = |(CurrentPPN[26:0]); // must have zero PPN2, PPN1, PPN0
assign GigapageMisaligned = |(CurrentPPN[17:0]); // must have zero PPN1 and PPN0
assign MegapageMisaligned = |(CurrentPPN[8:0]); // must have zero PPN0
assign HPTWPAdrE = {{(`XLEN-`PA_BITS){1'b0}}, TranslationPAdr[`PA_BITS-1:0]};
end
// Page Table Walker FSM
// ***Is there a w ay to reduce the number of cycles needed to do the walk?
always_comb
case (WalkerState)
IDLE: if (StartWalk) NextWalkerState = InitialWalkerState;
else NextWalkerState = IDLE;
LEVEL3_SET_ADR: NextWalkerState = LEVEL3_READ;
LEVEL3_READ: if (HPTWStall) NextWalkerState = LEVEL3_READ;
else NextWalkerState = LEVEL3;
LEVEL3: if (ValidLeafPTE && ~TerapageMisaligned) NextWalkerState = LEAF;
else if (ValidNonLeafPTE) NextWalkerState = LEVEL2_SET_ADR;
else NextWalkerState = FAULT;
LEVEL2_SET_ADR: NextWalkerState = LEVEL2_READ;
LEVEL2_READ: if (HPTWStall) NextWalkerState = LEVEL2_READ;
else NextWalkerState = LEVEL2;
LEVEL2: if (ValidLeafPTE && ~GigapageMisaligned) NextWalkerState = LEAF;
else if (ValidNonLeafPTE) NextWalkerState = LEVEL1_SET_ADR;
else NextWalkerState = FAULT;
LEVEL1_SET_ADR: NextWalkerState = LEVEL1_READ;
LEVEL1_READ: if (HPTWStall) NextWalkerState = LEVEL1_READ;
else NextWalkerState = LEVEL1;
LEVEL1: if (ValidLeafPTE && ~MegapageMisaligned) NextWalkerState = LEAF;
else if (ValidNonLeafPTE) NextWalkerState = LEVEL0_SET_ADR;
else NextWalkerState = FAULT;
LEVEL0_SET_ADR: NextWalkerState = LEVEL0_READ;
LEVEL0_READ: if (HPTWStall) NextWalkerState = LEVEL0_READ;
else NextWalkerState = LEVEL0;
LEVEL0: if (ValidLeafPTE) NextWalkerState = LEAF;
else NextWalkerState = FAULT;
LEAF: NextWalkerState = IDLE;
FAULT: NextWalkerState = IDLE;
default: begin
$error("Default state in HPTW should be unreachable");
NextWalkerState = IDLE; // should never be reached
end
endcase
end else begin
assign HPTWPAdrE = 0;
assign HPTWRead = 0;
assign WalkerInstrPageFaultF = 0;
assign WalkerLoadPageFaultM = 0;
assign WalkerStorePageFaultM = 0;
assign SelPTW = 0;
end
endgenerate
endmodule