mirror of
https://github.com/openhwgroup/cvw
synced 2025-01-23 21:14:37 +00:00
320 lines
13 KiB
Python
Executable File
320 lines
13 KiB
Python
Executable File
#!/usr/bin/python3
|
|
|
|
###########################################
|
|
## Written: Ross Thompson ross1728@gmail.com
|
|
## Created: 4 Jan 2022
|
|
## Modified:
|
|
##
|
|
## Purpose: Parses the performance counters from a modelsim trace.
|
|
##
|
|
## A component of the CORE-V-WALLY configurable RISC-V project.
|
|
##
|
|
## Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
|
|
##
|
|
## SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
|
|
##
|
|
## Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
|
|
## except in compliance with the License, or, at your option, the Apache License version 2.0. You
|
|
## may obtain a copy of the License at
|
|
##
|
|
## https:##solderpad.org/licenses/SHL-2.1/
|
|
##
|
|
## Unless required by applicable law or agreed to in writing, any work distributed under the
|
|
## License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
|
|
## either express or implied. See the License for the specific language governing permissions
|
|
## and limitations under the License.
|
|
################################################################################################
|
|
|
|
import os
|
|
import sys
|
|
import matplotlib.pyplot as plt
|
|
import re
|
|
|
|
#RefData={'twobitCModel' :(['6', '8', '10', '12', '14', '16'],
|
|
# [11.0680836450622, 8.53864970807778, 7.59565430177984, 6.38741598498948, 5.83662961500838, 5.83662961500838]),
|
|
# 'gshareCModel' : (['6', '8', '10', '12', '14', '16'],
|
|
# [14.5859173702079, 12.3634674403619, 10.5806018170154, 8.38831266973592, 6.37097544620762, 3.52638362703015])
|
|
#}
|
|
|
|
RefData = [('twobitCModel6', 11.0501534891674), ('twobitCModel8', 8.51829052266352), ('twobitCModel10', 7.56775222626483),
|
|
('twobitCModel12', 6.31366834586515), ('twobitCModel14', 5.72699936834177), ('twobitCModel16', 5.72699936834177),
|
|
('gshareCModel6', 14.5731555979574), ('gshareCModel8', 12.3155658100497), ('gshareCModel10', 10.4589596630561),
|
|
('gshareCModel12', 8.25796055444401), ('gshareCModel14', 6.23093702707613), ('gshareCModel16', 3.34001125650374)]
|
|
|
|
|
|
def ComputeCPI(benchmark):
|
|
'Computes and inserts CPI into benchmark stats.'
|
|
(nameString, opt, dataDict) = benchmark
|
|
CPI = 1.0 * int(dataDict['Mcycle']) / int(dataDict['InstRet'])
|
|
dataDict['CPI'] = CPI
|
|
|
|
def ComputeBranchDirMissRate(benchmark):
|
|
'Computes and inserts branch direction miss prediction rate.'
|
|
(nameString, opt, dataDict) = benchmark
|
|
branchDirMissRate = 100.0 * int(dataDict['BP Dir Wrong']) / int(dataDict['Br Count'])
|
|
dataDict['BDMR'] = branchDirMissRate
|
|
|
|
def ComputeBranchTargetMissRate(benchmark):
|
|
'Computes and inserts branch target miss prediction rate.'
|
|
# *** this is wrong in the verilog test bench
|
|
(nameString, opt, dataDict) = benchmark
|
|
branchTargetMissRate = 100.0 * int(dataDict['BP Target Wrong']) / (int(dataDict['Br Count']) + int(dataDict['Jump Not Return']))
|
|
dataDict['BTMR'] = branchTargetMissRate
|
|
|
|
def ComputeRASMissRate(benchmark):
|
|
'Computes and inserts return address stack miss prediction rate.'
|
|
(nameString, opt, dataDict) = benchmark
|
|
RASMPR = 100.0 * int(dataDict['RAS Wrong']) / int(dataDict['Return'])
|
|
dataDict['RASMPR'] = RASMPR
|
|
|
|
def ComputeInstrClassMissRate(benchmark):
|
|
'Computes and inserts instruction class miss prediction rate.'
|
|
(nameString, opt, dataDict) = benchmark
|
|
ClassMPR = 100.0 * int(dataDict['Instr Class Wrong']) / int(dataDict['InstRet'])
|
|
dataDict['ClassMPR'] = ClassMPR
|
|
|
|
def ComputeICacheMissRate(benchmark):
|
|
'Computes and inserts instruction class miss prediction rate.'
|
|
(nameString, opt, dataDict) = benchmark
|
|
ICacheMR = 100.0 * int(dataDict['I Cache Miss']) / int(dataDict['I Cache Access'])
|
|
dataDict['ICacheMR'] = ICacheMR
|
|
|
|
def ComputeICacheMissTime(benchmark):
|
|
'Computes and inserts instruction class miss prediction rate.'
|
|
(nameString, opt, dataDict) = benchmark
|
|
cycles = int(dataDict['I Cache Miss'])
|
|
if(cycles == 0): ICacheMR = 0
|
|
else: ICacheMR = 100.0 * int(dataDict['I Cache Cycles']) / cycles
|
|
dataDict['ICacheMT'] = ICacheMR
|
|
|
|
def ComputeDCacheMissRate(benchmark):
|
|
'Computes and inserts instruction class miss prediction rate.'
|
|
(nameString, opt, dataDict) = benchmark
|
|
DCacheMR = 100.0 * int(dataDict['D Cache Miss']) / int(dataDict['D Cache Access'])
|
|
dataDict['DCacheMR'] = DCacheMR
|
|
|
|
def ComputeDCacheMissTime(benchmark):
|
|
'Computes and inserts instruction class miss prediction rate.'
|
|
(nameString, opt, dataDict) = benchmark
|
|
cycles = int(dataDict['D Cache Miss'])
|
|
if(cycles == 0): DCacheMR = 0
|
|
else: DCacheMR = 100.0 * int(dataDict['D Cache Cycles']) / cycles
|
|
dataDict['DCacheMT'] = DCacheMR
|
|
|
|
def ComputeAll(benchmarks):
|
|
for benchmark in benchmarks:
|
|
ComputeCPI(benchmark)
|
|
ComputeBranchDirMissRate(benchmark)
|
|
ComputeBranchTargetMissRate(benchmark)
|
|
ComputeRASMissRate(benchmark)
|
|
ComputeInstrClassMissRate(benchmark)
|
|
ComputeICacheMissRate(benchmark)
|
|
ComputeICacheMissTime(benchmark)
|
|
ComputeDCacheMissRate(benchmark)
|
|
ComputeDCacheMissTime(benchmark)
|
|
|
|
def printStats(benchmark):
|
|
(nameString, opt, dataDict) = benchmark
|
|
print('Test', nameString)
|
|
print('Compile configuration', opt)
|
|
print('CPI \t\t\t %1.2f' % dataDict['CPI'])
|
|
print('Branch Dir Pred Miss Rate %2.2f' % dataDict['BDMR'])
|
|
print('Branch Target Pred Miss Rate %2.2f' % dataDict['BTMR'])
|
|
print('RAS Miss Rate \t\t %1.2f' % dataDict['RASMPR'])
|
|
print('Instr Class Miss Rate %1.2f' % dataDict['ClassMPR'])
|
|
print('I Cache Miss Rate %1.4f' % dataDict['ICacheMR'])
|
|
print('I Cache Miss Ave Cycles %1.4f' % dataDict['ICacheMT'])
|
|
print('D Cache Miss Rate %1.4f' % dataDict['DCacheMR'])
|
|
print('D Cache Miss Ave Cycles %1.4f' % dataDict['DCacheMT'])
|
|
print()
|
|
|
|
def ProcessFile(fileName):
|
|
'''Extract preformance counters from a modelsim log. Outputs a list of tuples for each test/benchmark.
|
|
The tuple contains the test name, optimization characteristics, and dictionary of performance counters.'''
|
|
# 1 find lines with Read memfile and extract test name
|
|
# 2 parse counters into a list of (name, value) tuples (dictionary maybe?)
|
|
benchmarks = []
|
|
transcript = open(fileName, 'r')
|
|
HPMClist = { }
|
|
testName = ''
|
|
for line in transcript.readlines():
|
|
lineToken = line.split()
|
|
if(len(lineToken) > 3 and lineToken[1] == 'Read' and lineToken[2] == 'memfile'):
|
|
opt = lineToken[3].split('/')[-4]
|
|
testName = lineToken[3].split('/')[-1].split('.')[0]
|
|
HPMClist = { }
|
|
elif(len(lineToken) > 4 and lineToken[1][0:3] == 'Cnt'):
|
|
countToken = line.split('=')[1].split()
|
|
value = int(countToken[0])
|
|
name = ' '.join(countToken[1:])
|
|
HPMClist[name] = value
|
|
elif ('is done' in line):
|
|
benchmarks.append((testName, opt, HPMClist))
|
|
return benchmarks
|
|
|
|
def ComputeArithmeticAverage(benchmarks):
|
|
average = {}
|
|
index = 0
|
|
for (testName, opt, HPMClist) in benchmarks:
|
|
for field in HPMClist:
|
|
value = HPMClist[field]
|
|
if field not in average:
|
|
average[field] = value
|
|
else:
|
|
average[field] += value
|
|
index += 1
|
|
benchmarks.append(('All', '', average))
|
|
|
|
def FormatToPlot(currBenchmark):
|
|
names = []
|
|
values = []
|
|
for config in currBenchmark:
|
|
#print ('config' , config)
|
|
names.append(config[0])
|
|
values.append(config[1])
|
|
return (names, values)
|
|
|
|
def GeometricAverage(benchmarks, field):
|
|
Product = 1
|
|
index = 0
|
|
for (testName, opt, HPMCList) in benchmarks:
|
|
#print(HPMCList)
|
|
Product *= HPMCList[field]
|
|
index += 1
|
|
return Product ** (1.0/index)
|
|
|
|
def ComputeGeometricAverage(benchmarks):
|
|
fields = ['BDMR', 'BTMR', 'RASMPR', 'ClassMPR', 'ICacheMR', 'DCacheMR', 'CPI', 'ICacheMT', 'DCacheMT']
|
|
AllAve = {}
|
|
for field in fields:
|
|
Product = 1
|
|
index = 0
|
|
for (testName, opt, HPMCList) in benchmarks:
|
|
#print(HPMCList)
|
|
Product *= HPMCList[field]
|
|
index += 1
|
|
AllAve[field] = Product ** (1.0/index)
|
|
benchmarks.append(('All', '', AllAve))
|
|
|
|
if(sys.argv[1] == '-b'):
|
|
configList = []
|
|
summery = 0
|
|
if(sys.argv[2] == '-s'):
|
|
summery = 1
|
|
sys.argv = sys.argv[1::]
|
|
for config in sys.argv[2::]:
|
|
benchmarks = ProcessFile(config)
|
|
#ComputeArithmeticAverage(benchmarks)
|
|
ComputeAll(benchmarks)
|
|
ComputeGeometricAverage(benchmarks)
|
|
#print('CONFIG: %s GEO MEAN: %f' % (config, GeometricAverage(benchmarks, 'BDMR')))
|
|
configList.append((config.split('.')[0], benchmarks))
|
|
|
|
# Merge all configruations into a single list
|
|
benchmarkAll = []
|
|
for (config, benchmarks) in configList:
|
|
#print(config)
|
|
for benchmark in benchmarks:
|
|
(nameString, opt, dataDict) = benchmark
|
|
#print("BENCHMARK")
|
|
#print(nameString)
|
|
#print(opt)
|
|
#print(dataDict)
|
|
benchmarkAll.append((nameString, opt, config, dataDict))
|
|
#print('ALL!!!!!!!!!!')
|
|
#for bench in benchmarkAll:
|
|
# print('BENCHMARK')
|
|
# print(bench)
|
|
#print('ALL!!!!!!!!!!')
|
|
|
|
# now extract all branch prediction direction miss rates for each
|
|
# namestring + opt, config
|
|
benchmarkDict = { }
|
|
for benchmark in benchmarkAll:
|
|
(name, opt, config, dataDict) = benchmark
|
|
if name+'_'+opt in benchmarkDict:
|
|
benchmarkDict[name+'_'+opt].append((config, dataDict['BDMR']))
|
|
else:
|
|
benchmarkDict[name+'_'+opt] = [(config, dataDict['BDMR'])]
|
|
|
|
size = len(benchmarkDict)
|
|
index = 1
|
|
if(summery == 0):
|
|
#print('Number of plots', size)
|
|
|
|
for benchmarkName in benchmarkDict:
|
|
currBenchmark = benchmarkDict[benchmarkName]
|
|
(names, values) = FormatToPlot(currBenchmark)
|
|
print(names, values)
|
|
plt.subplot(6, 7, index)
|
|
plt.bar(names, values)
|
|
plt.title(benchmarkName)
|
|
plt.ylabel('BR Dir Miss Rate (%)')
|
|
#plt.xlabel('Predictor')
|
|
index += 1
|
|
else:
|
|
combined = benchmarkDict['All_']
|
|
# merge the reference data into rtl data
|
|
combined.extend(RefData)
|
|
(name, value) = FormatToPlot(combined)
|
|
lst = []
|
|
dct = {}
|
|
category = []
|
|
length = []
|
|
accuracy = []
|
|
for index in range(0, len(name)):
|
|
match = re.match(r"([a-z]+)([0-9]+)", name[index], re.I)
|
|
percent = 100 -value[index]
|
|
if match:
|
|
(PredType, size) = match.groups()
|
|
category.append(PredType)
|
|
length.append(size)
|
|
accuracy.append(percent)
|
|
if(PredType not in dct):
|
|
dct[PredType] = ([size], [percent])
|
|
else:
|
|
(currSize, currPercent) = dct[PredType]
|
|
currSize.append(size)
|
|
currPercent.append(percent)
|
|
dct[PredType] = (currSize, currPercent)
|
|
print(dct)
|
|
fig, axes = plt.subplots()
|
|
marker={'twobit' : '^', 'gshare' : 'o', 'global' : 's', 'gshareBasic' : '*', 'globalBasic' : 'x', 'btb': 'x', 'twobitCModel' : 'x', 'gshareCModel' : '*', 'tenlocal' : '.', 'eightlocal' : ',', 'fourlocal' : 'x', 'tenlocalahead' : '.', 'eightlocalahead' : ',', 'fourlocalahead' : 'x', 'tenlocalrepair' : 'x'}
|
|
colors={'twobit' : 'black', 'gshare' : 'blue', 'global' : 'dodgerblue', 'gshareBasic' : 'turquoise', 'globalBasic' : 'lightsteelblue', 'btb' : 'blue', 'twobitCModel' : 'gray', 'gshareCModel' : 'dodgerblue', 'tenlocal' : 'lightblue', 'eightlocal' : 'lightblue', 'fourlocal' : 'lightblue', 'tenlocalahead' : 'lightblue', 'eightlocalahead' : 'lightblue', 'fourlocalahead' : 'lightblue', 'tenlocalrepair' : 'lightblue'}
|
|
for cat in dct:
|
|
(x, y) = dct[cat]
|
|
x=[int(2**int(v)) for v in x]
|
|
#print(x, y)
|
|
print(cat)
|
|
axes.plot(x,y, color=colors[cat])
|
|
axes.scatter(x,y, label=cat, marker=marker[cat], color=colors[cat])
|
|
#plt.scatter(x, y, label=cat)
|
|
#plt.plot(x, y)
|
|
#axes.set_xticks([4, 6, 8, 10, 12, 14])
|
|
axes.legend(loc='upper left')
|
|
axes.set_xscale("log")
|
|
axes.set_ylabel('Prediction Accuracy')
|
|
axes.set_xlabel('Entries')
|
|
axes.set_xticks([64, 256, 1024, 4096, 16384, 65536])
|
|
axes.set_xticklabels([64, 256, 1024, 4096, 16384, 65536])
|
|
axes.grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
|
|
plt.show()
|
|
|
|
|
|
else:
|
|
# steps 1 and 2
|
|
benchmarks = ProcessFile(sys.argv[1])
|
|
print(benchmarks[0])
|
|
ComputeAll(benchmarks)
|
|
ComputeGeometricAverage(benchmarks)
|
|
# 3 process into useful data
|
|
# cache hit rates
|
|
# cache fill time
|
|
# branch predictor status
|
|
# hazard counts
|
|
# CPI
|
|
# instruction distribution
|
|
for benchmark in benchmarks:
|
|
printStats(benchmark)
|
|
|