cvw/tests/testgen/imperas/testgen-PIPELINE.py
2021-10-29 22:31:48 -07:00

1917 lines
80 KiB
Python
Executable File

#!/usr/bin/python
###################################################################################################
# testgen-PIPELINE.py
#
# Shriya Nadgauda: snadgauda@hmc.edu & Ethan Falicov: efalicov@hmc.edu
# Created: Feb 2, 2021
#
# Generate random assembly code for RISC-V Processor Design Validation.
###################################################################################################
# Many Functions Based On: https://github.com/wallento/riscv-python-model (MIT License)
###################################################################################################
# Libraries
###################################################################################################
from random import seed
from random import randint
from enum import Enum
import numpy as np
import re
from datetime import datetime
MEMSTART = 'testdata'
###################################################################################################
# Main Body
###################################################################################################
class InvalidImmediateValueException(Exception):
pass
class InvalidRegisterNumberException(Exception):
pass
class InvalidRegisterValueException(Exception):
pass
class WriteToImmutableRegisterException(Exception):
pass
class ReadFromUninitializedMemoryException(Exception):
pass
class InvalidMemoryWriteLocation(Exception):
pass
def zeroExtend(inputBits, resultNumBits):
numDigitsToAppend = resultNumBits - len(inputBits)
newBits = inputBits
if numDigitsToAppend > 0:
newBits = ('0' * numDigitsToAppend) + inputBits
return newBits
def oneExtend(inputBits, resultNumBits):
numDigitsToAppend = resultNumBits - len(inputBits)
newBits = inputBits
if numDigitsToAppend > 0:
newBits = ('1' * numDigitsToAppend) + inputBits
return newBits
def signExtend(inputBits, resultNumBits):
if inputBits[0] == '1':
return oneExtend(inputBits = inputBits, resultNumBits = resultNumBits)
return zeroExtend(inputBits = inputBits, resultNumBits = resultNumBits)
def binToDec(inputBits):
if inputBits[0] == '0':
return int(inputBits, 2)
numBits = len(inputBits)
twoCompMask = (1 << (numBits - 1)) - 1
msbMask = (1 << (numBits -1))
return int((-1 * (msbMask * int(inputBits[0], 2))) + (twoCompMask & int(inputBits, 2)))
def randBinary(signed, numBits, valueAlignment):
# use this for corners: xlen = 32 here
# corners = [0, 1, 2, 0xFF, 0x624B3E976C52DD14 % 2**xlen, 2**(xlen-1)-2, 2**(xlen-1)-1,
# 2**(xlen-1), 2**(xlen-1)+1, 0xC365DDEB9173AB42 % 2**xlen, 2**(xlen)-2, 2**(xlen)-1]
# when not biased don't gen numbers from (|2^(n-2) to 2^(n-2)|)
biased = np.random.randint(0, 3) # on 2 generate random edge case
returnVal = 0
sign = 0
if biased < 2:
# print("unbiased")
if not(signed):
returnVal = np.random.randint(0, 2**(numBits - 2))
else:
returnVal = np.random.randint(-2**(numBits - 2), 2**(numBits - 2))
else:
# print("corner")
if not(signed):
returnVal = np.random.randint(2**(numBits - 2)+1, 2**(numBits - 1)-2)
else:
sign = np.random.randint(0, 2) # 0 is pos, 1 is neg
if sign:
returnVal = np.random.randint(2**(numBits - 2)+1, 2**(numBits - 1)-2)
else:
returnVal = np.random.randint(-2**(numBits - 1), -2**(numBits - 2)-1)
binReturnVal = bin(returnVal) #remove "0b"
if returnVal >= 0:
binReturnVal = binReturnVal[2:]
#make binary correct length
while(len(binReturnVal) < numBits):
binReturnVal = "0" + binReturnVal
else:
binReturnVal = binReturnVal[3:]
#two's compliment
flipped = ''.join('1' if x == '0' else '0' for x in binReturnVal)
added = bin(int(flipped, 2) + 1)[2:]
while(len(added) < len(flipped)):
added = "0" + added
while(len(added) < numBits):
added = "1" + added
binReturnVal = added
# ensure correct value assignment
if valueAlignment == 1:
return binReturnVal
indexVal = valueAlignment // 2
returnValue = binReturnVal[:-indexVal] + "0"*indexVal
return returnValue
def randHex(sign, numBits, divisibleByValue):
val = hex(int(randBinary(sign, numBits*4, divisibleByValue), 2))
return val
def randDec(valueRangeMin, valueRangeMax, divisibleByValue):
valRange = (valueRangeMax - valueRangeMin)//divisibleByValue
return (np.random.randint(0, valRange + 1) * divisibleByValue + valueRangeMin)
class Label:
def __init__(self, name, pcValue):
self.name = name
self.pcValue = pcValue
class Immediate:
def __init__(self, xlen, numBits = None, signed = 1):
self.xlen = int(xlen)
if numBits == None:
numBits = self.xlen
self.numBits = int(numBits)
self.signed = signed
self.bits = '0'*self.numBits
self.twoCompMask = (1 << (self.numBits - 1)) - 1
self.msbMask = (1 << (self.numBits -1))
self.value = self.getDecValue()
self.maxValue = self.getMaxValue()
self.minValue = self.getMinValue()
def getDecValue(self):
if self.signed == 1:
return self.getValueSigned()
return self.getValueUnsigned()
def getMaxValue(self):
if self.signed == 1:
return ((2**(self.numBits - 1)) - 1)
return ((2**self.numBits) - 1)
def getMinValue(self):
if self.signed == 1:
return (-1 * 2**(self.numBits - 1))
return 0
def signExtend(self, inputBits = None):
if inputBits == None:
inputBits = self.bits
return signExtend(inputBits, self.numBits)
def oneExtend(self, inputBits = None):
if inputBits == None:
inputBits = self.bits
return oneExtend(inputBits, self.numBits)
def zeroExtend(self, inputBits = None):
if inputBits == None:
inputBits = self.bits
return zeroExtend(inputBits, self.numBits)
def setValue(self, newValue, signed = None):
if signed != None:
self.signed = signed
self.maxValue = self.getMaxValue()
self.minValue = self.getMinValue()
if newValue > self.maxValue:
errStr = 'Attempted: {}, Max: {}'.format(newValue, self.maxValue)
raise InvalidImmediateValueException(errStr)
newValue = self.maxValue
elif newValue < self.minValue:
errStr = 'Attempted: {}, Min: {}'.format(newValue, self.minValue)
raise InvalidImmediateValueException(errStr)
newValue = self.minValue
self.value = newValue
bitValue = ''
if (self.signed == 1) and (newValue < 0):
bitValue = bin(self.value)[3:] # Remove the -0b
flipped = ''.join('1' if x == '0' else '0' for x in bitValue)
bitValue = bin(int(flipped, 2) + 1)[2:]
if len(bitValue) < len(flipped): # Correction for removing sig figs
bitValue = '0'*(len(flipped)-len(bitValue)) + bitValue
bitValue = self.oneExtend(bitValue)
elif self.signed == 1 and newValue >= 0:
bitValue = bin(self.value)[2:] # Remove the 0b
bitValue = self.zeroExtend(bitValue)
else:
bitValue = bitValue = bin(self.value)[2:] # Remove the 0b
bitValue = self.zeroExtend(bitValue)
self.bits = bitValue
def setBits(self, newBits, signed = None):
if signed != None:
self.signed = signed
if len(newBits) != self.numBits:
errStr = 'Attempted to write {} bits into {} bit immediate'.format(len(newBits), self.numBits)
raise InvalidImmediateValueException(errStr)
self.bits = newBits
self.value = self.getDecValue()
def randomize(self, signed = None, minVal = None, maxVal = None, granularity = None):
if signed != None:
self.signed = signed
self.maxValue = self.getMaxValue()
self.minValue = self.getMinValue()
if minVal == None:
minVal = self.minValue
if maxVal == None:
maxVal = self.maxValue
if granularity == None:
granularity = GRANULARITY.BYTE
granularityNum = 1
if granularity == GRANULARITY.HALFWORD:
granularityNum = self.xlen // 16
elif granularity == GRANULARITY.WORD:
granularityNum = self.xlen // 8
minVal = int(np.ceil(minVal / granularityNum) * granularityNum)
maxVal = int(np.floor(maxVal / granularityNum) * granularityNum)
valRange = (maxVal - minVal)//granularityNum
randValue = randint(0, valRange) * granularityNum + minVal
self.setValue(randValue, signed=self.signed)
def getValueSigned(self):
if self.bits[0] == '0':
return int(self.bits, 2)
else:
return int((-1 * (self.msbMask * int(self.bits[0], 2))) + (self.twoCompMask & int(self.bits, 2)))
def getValueUnsigned(self):
return int(self.bits, 2)
def __str__(self):
infoStr = ''
if self.signed == 1:
infoStr = 'Signed {} bit value: {}'.format(self.numBits, self.value)
infoStr = 'Unsigned {} bit value: {}'.format(self.numBits, self.value)
return 'Immediate bits {} ({})'.format(self.bits, infoStr)
@classmethod
def randImm12(cls, xlen, signed = 1):
imm = cls(xlen = xlen, numBits = 12, signed = signed)
imm.randomize()
return imm
@classmethod
def setImm12(cls, xlen, value, signed = 1):
imm = cls(xlen = xlen, numBits = 12, signed = signed)
imm.setValue(newValue = value)
return imm
@classmethod
def setImm20(cls, xlen, value, signed = 1):
imm = cls(xlen = xlen, numBits = 20, signed = signed)
imm.setValue(newValue = value, signed=1)
return imm
@classmethod
def randZImm5(cls, xlen, signed = 0):
imm = cls(xlen = xlen, numBits = 5, signed = signed)
imm.randomize()
return imm
@classmethod
def randImm13(cls, xlen, signed = 1):
imm = cls(xlen = xlen, numBits = 13, signed = signed)
imm.randomize()
return imm
@classmethod
def randImm20(cls, xlen, signed = 1):
imm = cls(xlen = xlen, numBits = 20, signed = signed)
imm.randomize()
return imm
class Register:
def __init__(self, xlen, signed = 1):
self.xlen = int(xlen)
self.numBits = self.xlen
self.signed = signed
self.bits = '0'*self.numBits
self.twoCompMask = (1 << (self.numBits - 1)) - 1
self.msbMask = (1 << (self.numBits -1))
self.value = self.getDecValue()
self.immutable = False
self.regName = None
self.maxValue = self.getMaxValue()
self.minValue = self.getMinValue()
def getRegName(self):
return self.regName
def setRegName(self, newName):
self.regName = newName
def setImmutable(self, immutable):
self.immutable = immutable
def getDecValue(self):
if self.signed == 1:
return self.getValueSigned()
return self.getValueUnsigned()
def getMaxValue(self):
if self.signed == 1:
return (2**(self.numBits - 1) - 1)
return (2**(self.numBits) - 1)
def getMinValue(self):
if self.signed == 1:
return (-1 * 2**(self.numBits - 1))
return 0
def signExtend(self, inputBits = None):
if inputBits == None:
inputBits = self.bits
return signExtend(inputBits, self.numBits)
def oneExtend(self, inputBits = None):
if inputBits == None:
inputBits = self.bits
return oneExtend(inputBits, self.numBits)
def zeroExtend(self, inputBits = None):
if inputBits == None:
inputBits = self.bits
return zeroExtend(inputBits, self.numBits)
def setValue(self, newValue, signed = None):
if self.immutable:
raise(WriteToImmutableRegisterException)
else:
if signed != None:
self.signed = signed
self.maxValue = self.getMaxValue()
self.minValue = self.getMinValue()
if newValue > self.maxValue:
errStr = 'Attempted: {}, Max: {}'.format(newValue, self.maxValue)
raise InvalidRegisterValueException(errStr)
newValue = self.maxValue
elif newValue < self.minValue:
errStr = 'Attempted: {}, Min: {}'.format(newValue, self.minValue)
raise InvalidRegisterValueException(errStr)
newValue = self.minValue
self.value = newValue
bitValue = ''
if signed == 1 and newValue < 0:
bitValue = bin(self.value)[3:] # Remove the -0b
flipped = ''.join('1' if x == '0' else '0' for x in bitValue)
bitValue = bin(int(flipped, 2) + 1)[2:]
if len(bitValue) < len(flipped): # Correction for removing sig figs
bitValue = '0'*(len(flipped)-len(bitValue)) + bitValue
bitValue = self.oneExtend(bitValue)
elif signed == 1 and newValue >= 0:
bitValue = bin(self.value)[2:] # Remove the 0b
bitValue = self.zeroExtend(bitValue)
else:
bitValue = bitValue = bin(self.value)[2:] # Remove the 0b
bitValue = self.zeroExtend(bitValue)
self.bits = bitValue
def setBits(self, newBits, signed = None):
if self.immutable:
raise(WriteToImmutableRegisterException)
else:
if signed != None:
self.signed = signed
if len(newBits) != self.numBits:
errStr = 'Attempted to write {} bits into {} bit register'.format(len(newBits), self.numBits)
raise InvalidRegisterValueException(errStr)
self.bits = newBits
self.value = self.getDecValue()
def randomize(self, signed = None, minVal = None, maxVal = None, granularity = None):
if self.immutable:
raise(WriteToImmutableRegisterException)
else:
if signed != None:
self.signed = signed
self.maxValue = self.getMaxValue()
self.minValue = self.getMinValue()
if minVal == None:
minVal = self.minValue
if maxVal == None:
maxVal = self.maxValue
if granularity == None:
granularity = GRANULARITY.BYTE
granularityNum = 1
if granularity == GRANULARITY.HALFWORD:
granularityNum = self.xlen // 16
elif granularity == GRANULARITY.WORD:
granularityNum = self.xlen // 8
minVal = int(np.ceil(minVal / granularityNum) * granularityNum)
maxVal = int(np.floor(maxVal / granularityNum) * granularityNum)
valRange = (maxVal - minVal)//granularityNum
randValue = randint(0, valRange) * granularityNum + minVal
self.setValue(randValue, signed=self.signed)
def getValueSigned(self):
if self.bits[0] == 0:
return int(self.bits, 2)
else:
return int((-1 * (self.msbMask * int(self.bits[0], 2))) + (self.twoCompMask & int(self.bits, 2)))
def getValueUnsigned(self):
return int(self.bits, 2)
def __str__(self):
infoStr = ''
if self.signed == 1:
infoStr += 'Signed'
else:
infoStr += 'Unsigned'
if self.immutable == True:
infoStr += ' Immutable'
return('Register {} bits: {} ({} value: {})'.format(self.regName, self.bits, infoStr, self.value))
def __add__(self, other):
self.setValue(self.value + int(other))
return self
@classmethod
def immutableRegister(cls, xlen, value, signed = 1):
reg = cls(xlen = xlen)
reg.setValue(newValue = value, signed = signed)
reg.setImmutable(immutable = True)
return reg
class RegFile():
def __init__(self, xlen, numRegs = 32, immutableRegsDict = {0 : 0}, prefix = 'x'):
self.xlen = xlen
self.numRegs = numRegs
self.regs = []
self.immutableRegsList = []
self.prefix = prefix
for i in range(0, numRegs):
self.regs.append(Register(xlen))
self.regs[-1].setRegName('{}{}'.format(prefix, i))
for immutableRegKey, immutableRegVal in immutableRegsDict.items():
self.regs[immutableRegKey].setValue(newValue = immutableRegVal, signed = 1)
self.immutableRegsList.append(immutableRegKey)
def getRandReg(self):
reg = randint(1, len(self.regs)-1)
while(reg in self.immutableRegsList):
reg = randint(1, len(self.regs)-1)
return self.regs[reg]
# def getRandMemReg(self):
# reg = randint(1, len(self.memoryreg)-1)
# while(reg in self.immutableRegsList):
# reg = randint(1, len(self.memoryreg)-1)
# return str(reg)
def randomize(self):
for regNum in range(0, self.numRegs):
if regNum not in self.immutableRegsList:
self.regs[regNum].randomize()
def setRegValue(self, regNum, newValue, signed = None):
if regNum in self.immutableRegsList:
errStr = 'Write to x{} not allowed'.format(regNum)
raise WriteToImmutableRegisterException(errStr)
if regNum > self.numRegs - 1:
errStr = 'Write to x{} exceeds number of registers: {}'.format(regNum, self.numRegs)
raise InvalidRegisterNumberException(errStr)
self.regs[regNum].setValue(newValue = newValue, signed = signed)
def setRegBits(self, regNum, newBits, signed = None):
if regNum in self.immutableRegsList:
errStr = 'Write to x{} not allowed'.format(regNum)
raise WriteToImmutableRegisterException(errStr)
if regNum > self.numRegs - 1:
errStr = 'Write to x{} exceeds number of registers: {}'.format(regNum, self.numRegs)
raise InvalidRegisterNumberException(errStr)
self.regs[regNum].setBits(newBits = newBits, signed = signed)
def __str__(self):
formattedString = ''
for x in range(0, len(self.regs)):
formattedString += 'x{}:\t{}\n'.format(str(x), str(self.regs[x]))
return formattedString
class Memory():
def __init__(self, xlen):
self.memDict = {} #keys: strings, values: binary strings
self.xlen = int(xlen)
self.minVal = 0
self.maxVal = 2047
def populateMemory(self, memDict):
# add all values of memDict to self.memDict
# overwrites any values that already exist
for key in memDict.keys():
self.memDict[key] = memDict[key]
def updateMemory(self, addr, granularity, value):
# sign extend value to 32 bits
if addr > self.maxVal:
errStr = 'Tried to write to invalid memory location {} max {}'.format(value, self.maxVal)
raise InvalidMemoryWriteLocation(errStr)
exValue = signExtend(value, self.xlen)
self.memDict[addr] = exValue
def readMemory(self, addr, granularity):
# check if memory is unitilaized
if addr not in self.memDict.keys():
errStr = 'Tried to read from uninitialized address: {}'.format(addr)
raise ReadFromUninitializedMemoryException(errStr)
val = self.memDict[addr]
if granularity == GRANULARITY.WORD:
val = val
elif granularity == GRANULARITY.HALFWORD:
val = val[-(self.xlen//2):]
else:
val = val[-(self.xlen//4):]
if val == "":
return '0'
return val
def genRandMemoryValue(self):
#generate a random value
minVal = self.minVal
maxVal = self.maxVal
randValue = randint(0, self.maxVal + 1)
# #convert to binary string
# bitValue = ''
# bitValue = bitValue = bin(randValue)[2:] # Remove the 0b
# bitValue = signExtend(bitValue, self.xlen)
return randValue
class Model():
def __init__(self, xlen, numRegs, immutableRegsDict, initPc = 0):
self.xlen = int(xlen)
self.memory = Memory(xlen=self.xlen)
self.regFile = RegFile(xlen=self.xlen, immutableRegsDict = immutableRegsDict)
self.pc = Register(xlen=self.xlen, signed=0)
self.pc.setValue(newValue=initPc)
self.pc.setRegName(newName = 'PC')
self.memStart = 0x8000400
self.memoryImmediateCounter = 0
self.resultImmediateCounter = 0
self.totalStoreCount = 0
class TestGen():
def __init__(self, numInstr, immutableRegsDict, instrSet, imperasPath):
self.numInstr = numInstr
self.instrSet = instrSet
self.xlen = int((re.search(r'\d+', instrSet)).group())
self.model = Model(xlen=self.xlen, numRegs=16, immutableRegsDict = immutableRegsDict)
self.prevLabel = 0
self.test_count = 0
self.imperasPath = imperasPath + instrSet.lower() + '/'
self.exportTestName = 'PIPELINE'
if (self.numInstr == 100000):
self.exportTestName += "-100K"
elif (self.numInstr == 1000000):
self.exportTestName += "-1M"
self.basename = 'WALLY-'+ self.exportTestName
self.fname = self.imperasPath + "src/" + self.basename + ".S"
self.refname = self.imperasPath + "references/" + self.basename + ".reference_output"
def genTestInstr(self, reg):
imm = Immediate.setImm12(xlen = self.xlen, value = self.model.resultImmediateCounter)
reg6 = self.model.regFile.regs[6]
out = [Instr.issue(model = self.model, instrName = "sw", rs2 = reg, imm = imm, rs1 = reg6)]
self.model.resultImmediateCounter += 4
if (self.model.resultImmediateCounter == 2040):
# Reset
imm2 = Immediate.setImm12(xlen = self.xlen, value = 2040)
reg6.setImmutable(False)
wreset = Instr.issue(model = self.model, instrName = "addi", rd = reg6, imm = imm2, rs1 = reg6)
reg6.setImmutable(True)
self.model.resultImmediateCounter = 0
out.append(wreset)
out.append('\n')
self.model.totalStoreCount += 1
return out
def branchInstruction(self, instr):
# get field and granularity of instruction
# randomly determine forward or back branch direction
fwd = np.random.randint(0, 2) #fwd on 1, bwd on 0
taken = np.random.randint(0,2) #not taken on 0, taken on 1
# pick 2 registers for branch comparison
reg1 = self.model.regFile.getRandReg()
reg2 = reg1
reg0 = self.model.regFile.regs[0]
while(reg2 == reg1):
reg2 = self.model.regFile.getRandReg()
instructions = []
if (fwd == 1):
# set r1 and r2 to what they should be to do the branching we want
if (instr == "beq" and taken==1) or (instr == "bne" and taken==0) or \
(instr == "blt" and taken==0) or (instr == "bge" and taken==1) or \
(instr == "bltu" and taken==0) or (instr == "bgeu" and taken==1): #r1 = r2
newInstr = Instr.issue(model = self.model, instrName="add", rd = reg1, rs1 = reg2, rs2 = reg0)
instructions.append(newInstr)
elif (instr == "beq" and taken==0) or (instr == "bne" and taken==1) or \
(instr == "blt" and taken==1) or (instr == "bltu" and taken==1): #r2 = r1 + 1
imm = Immediate.setImm12(xlen = self.xlen, value = 1)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
else: #r2 = r1 - 1
imm = Immediate.setImm12(xlen = self.xlen, value = -1)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
# add branching instruction
label = Label(name = self.prevLabel, pcValue = self.model.pc.getValueUnsigned())
branch = Instr.issue(model = self.model, instrName = instr, rs1 = reg2, rs2 = reg1, label = label, dir = 'f')
instructions.append(branch)
numInstr = np.random.randint(0, 6)
# add random alu instructions after branching before branch point
for i in range(0, numInstr):
curr = "RAND ALU INSTRUCTION"
rd = self.model.regFile.getRandReg()
r1 = self.model.regFile.getRandReg()
r2 = self.model.regFile.getRandReg()
instr = "add"
if (taken == 0):
instructions.append('add {}, {}, {}'.format(rd.getRegName(), r1.getRegName(), r2.getRegName()))
else:
instructions.append(Instr.issue(model = self.model, instrName = instr, rd = rd, rs1 = r1, rs2 = r2))
instructions.append(str(self.prevLabel) + ":")
self.prevLabel += 1
return instructions
else:
if (not taken):
if instr == "beq":
randImm = np.random.randint(1, 10)
imm = Immediate.setImm12(xlen = self.xlen, value = randImm)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
elif instr == "bne":
imm = Immediate.setImm12(xlen = self.xlen, value = 0)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
elif instr == "bltu":
# deals with overflow
imm2 = Immediate.setImm12(xlen = self.xlen, value = 2)
newInstr = Instr.issue(model = self.model, instrName="srli", rd = reg1, rs1 = reg1, imm = imm2)
instructions.append(newInstr)
randImm = np.random.randint(1, 11)
imm = Immediate.setImm12(xlen = self.xlen, value = randImm)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
elif instr == "blt":
# deals with overflow
imm2 = Immediate.setImm12(xlen = self.xlen, value = 2)
newInstr = Instr.issue(model = self.model, instrName="srli", rd = reg1, rs1 = reg1, imm = imm2)
instructions.append(newInstr)
randImm = np.random.randint(1, 11)
imm = Immediate.setImm12(xlen = self.xlen, value = randImm)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
elif instr == "bgeu":
# deals with overflow
imm2 = Immediate.setImm12(xlen = self.xlen, value = 2)
newInstr = Instr.issue(model = self.model, instrName="srli", rd = reg1, rs1 = reg1, imm = imm2)
instructions.append(newInstr)
imm2 = Immediate.setImm12(xlen = self.xlen, value = 15)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg1, rs1 = reg1, imm = imm2)
instructions.append(newInstr)
randImm = np.random.randint(-10, 0)
imm = Immediate.setImm12(xlen = self.xlen, value = randImm)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
elif instr == "bge":
imm2 = Immediate.setImm12(xlen = self.xlen, value = 15)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg1, rs1 = reg1, imm = imm2)
instructions.append(newInstr)
randImm = np.random.randint(-10, 0)
imm = Immediate.setImm12(xlen = self.xlen, value = randImm)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
label = Label(name = self.prevLabel, pcValue = self.model.pc.getValueUnsigned())
instructions.append(str(self.prevLabel) + ":")
numInstr = np.random.randint(0, 6)
# add random alu instructions after branching before branch point
for i in range(0, numInstr):
curr = "RAND ALU INSTRUCTION"
rd = self.model.regFile.getRandReg()
while(rd == reg2 or rd == reg1):
rd = self.model.regFile.getRandReg()
r1 = self.model.regFile.getRandReg()
r2 = self.model.regFile.getRandReg()
instrJunk = "add"
instructions.append('add {}, {}, {}'.format(rd.getRegName(), r1.getRegName(), r2.getRegName()))
branch = Instr.issue(model = self.model, instrName = instr, rs1 = reg2, rs2 = reg1, label = label, dir = 'b')
instructions.append(branch)
else:
#setup reg instructions before any branching stuff
if instr == "beq":
numTimesRepeat = 1 #can only be repeated once with the way we are doing this
imm = Immediate.setImm12(xlen = self.xlen, value = numTimesRepeat)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
label = Label(name = self.prevLabel, pcValue = self.model.pc.getValueUnsigned())
instructions.append(str(self.prevLabel) + ":")
imm = Immediate.setImm12(xlen = self.xlen, value = -1)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg2, imm = imm)
instructions.append(newInstr)
elif instr == "bne":
numTimesRepeat = np.random.randint(2, 6)
imm = Immediate.setImm12(xlen = self.xlen, value = numTimesRepeat)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
label = Label(name = self.prevLabel, pcValue = self.model.pc.getValueUnsigned())
instructions.append(str(self.prevLabel) + ":")
imm = Immediate.setImm12(xlen = self.xlen, value = -1)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg2, imm = imm)
instructions.append(newInstr)
elif instr == "bltu":
numTimesRepeat = np.random.randint(2, 6)*(-1)
# deals with overflow
imm2 = Immediate.setImm12(xlen = self.xlen, value = 2)
newInstr = Instr.issue(model = self.model, instrName="srli", rd = reg1, rs1 = reg1, imm = imm2)
instructions.append(newInstr)
imm = Immediate.setImm12(xlen = self.xlen, value = numTimesRepeat)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
label = Label(name = self.prevLabel, pcValue = self.model.pc.getValueUnsigned())
instructions.append(str(self.prevLabel) + ":")
imm = Immediate.setImm12(xlen = self.xlen, value = 1)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg2, imm = imm)
instructions.append(newInstr)
elif instr == "blt":
# deals with overflow
imm2 = Immediate.setImm12(xlen = self.xlen, value = 2)
newInstr = Instr.issue(model = self.model, instrName="srli", rd = reg1, rs1 = reg1, imm = imm2)
instructions.append(newInstr)
numTimesRepeat = np.random.randint(2, 6)*(-1)
imm = Immediate.setImm12(xlen = self.xlen, value = numTimesRepeat)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
label = Label(name = self.prevLabel, pcValue = self.model.pc.getValueUnsigned())
instructions.append(str(self.prevLabel) + ":")
imm = Immediate.setImm12(xlen = self.xlen, value = 1)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg2, imm = imm)
instructions.append(newInstr)
elif instr == "bgeu":
numTimesRepeat = np.random.randint(2, 6)
imm = Immediate.setImm12(xlen = self.xlen, value = numTimesRepeat)
# deals with overflow
imm1 = Immediate.setImm12(xlen = self.xlen, value = 2)
newInstr1 = Instr.issue(model = self.model, instrName="srli", rd = reg1, rs1 = reg1, imm = imm1)
instructions.append(newInstr1)
imm2 = Immediate.setImm12(xlen = self.xlen, value = 15)
newInstr2 = Instr.issue(model = self.model, instrName="addi", rd = reg1, rs1 = reg1, imm = imm2)
instructions.append(newInstr2)
newInstr3 = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr3)
label = Label(name = self.prevLabel, pcValue = self.model.pc.getValueUnsigned())
instructions.append(str(self.prevLabel) + ":")
imm = Immediate.setImm12(xlen = self.xlen, value = -1)
newInstr4 = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg2, imm = imm)
instructions.append(newInstr4)
elif instr == "bge":
imm2 = Immediate.setImm12(xlen = self.xlen, value = 15)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg1, rs1 = reg1, imm = imm2)
instructions.append(newInstr)
numTimesRepeat = np.random.randint(2, 6)
imm = Immediate.setImm12(xlen = self.xlen, value = numTimesRepeat)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg1, imm = imm)
instructions.append(newInstr)
label = Label(name = self.prevLabel, pcValue = self.model.pc.getValueUnsigned())
instructions.append(str(self.prevLabel) + ":")
imm = Immediate.setImm12(xlen = self.xlen, value = -1)
newInstr = Instr.issue(model = self.model, instrName="addi", rd = reg2, rs1 = reg2, imm = imm)
instructions.append(newInstr)
numInstr = np.random.randint(0, 5)
for i in range(0, numInstr):
curr = "RAND ALU INSTRUCTION"
rd = self.model.regFile.getRandReg()
while(rd == reg2) or (rd == reg1):
rd = self.model.regFile.getRandReg()
r1 = self.model.regFile.getRandReg()
r2 = self.model.regFile.getRandReg()
instrJunk = "add"
instructions.append(Instr.issue(model = self.model, instrName = instrJunk, rd = rd, rs1 = r1, rs2 = r2))
branch = Instr.issue(model = self.model, instrName = instr, rs1 = reg2, rs2 = reg1, label = label, dir = 'b')
instructions.append(branch)
self.prevLabel += 1
return instructions
def getForwardingInstructions(self, instr):
ld_instr = instr
divBy = 1
granularity = None
if (instr == "lw"):
granularity = GRANULARITY.WORD
elif (instr == "lh") | (instr == 'lhu'):
divBy = self.xlen//2
granularity = GRANULARITY.HALFWORD
else:
divBy = self.xlen//4
granularity = GRANULARITY.BYTE
instructions = []
rd = self.model.regFile.getRandReg()
reg1 = self.model.regFile.regs[7]
memVal = self.model.memoryImmediateCounter
self.model.memoryImmediateCounter += 4
if instr == "ld":
if ((memVal + reg1.getValueUnsigned()) % 8) != 0:
memVal -= 4
self.model.memoryImmediateCounter -= 4 # we haven't read from a new location
if (self.model.memoryImmediateCounter == 2040):
self.model.memoryImmediateCounter = 0
immMem = Immediate.setImm12(xlen = self.model.xlen, value = 2040)
instructions.append(Instr.issue(model = self.model, instrName = "addi" , rd = reg1, rs1 = reg1, imm = immMem))
imm1 = Immediate.setImm12(xlen = self.model.xlen, value = memVal)
reg2 = self.model.regFile.getRandReg()
instructions.append(Instr.issue(model = self.model, instrName = "sw" , rs2 = reg2, rs1 = reg1, imm = imm1))
while (rd == reg1):
rd = self.model.regFile.getRandReg()
instructions.append(Instr.issue(model = self.model, instrName = ld_instr, rd = rd, rs1 = reg1, imm = imm1))
return instructions
def jumpInstruction(self, instr):
# fields, alignment = self.instrDict.instr[instr]
granularity = GRANULARITY.BYTE
divBy = 1
# randomly determine forward or back branch direction
fwd = np.random.randint(0, 2) #fwd on 1, bwd on 0
taken = np.random.randint(0,2) #not taken on 0, taken on 1
reg_pc = self.model.regFile.getRandReg()
instructions = []
label1 = Label(name = 1, pcValue = self.model.pc.getValueUnsigned())
label2 = Label(name = 2, pcValue = self.model.pc.getValueUnsigned())
label3 = Label(name = 3, pcValue = self.model.pc.getValueUnsigned())
if fwd == 1:
newInstr = Instr.issue(model = self.model, instrName=instr, rd = reg_pc, label = label1, dir = "f")
instructions.append(newInstr)
numInstr = np.random.randint(0, 6)
# add random alu instructions after jumping before jump point
reg_check = self.model.regFile.getRandReg()
for i in range(0, numInstr):
rd = self.model.regFile.getRandReg()
while (rd == reg_pc):
rd = self.model.regFile.getRandReg()
reg_check = rd
r1 = self.model.regFile.getRandReg()
r2 = self.model.regFile.getRandReg()
instructions.append(Instr.issue(model = self.model, instrName = "and", rd = rd, rs1 = r1, rs2 = r2))
instructions.append("1:")
self.model.pc += 4
# #make sure jump was taken
check_instr = self.genTestInstr(reg_check)
for check in check_instr:
instructions.append(check)
# #check value in pc + 4 reg
check_instr = self.genTestInstr(reg_pc)
for check in check_instr:
instructions.append(check)
else:
reg1 = self.model.regFile.getRandReg()
reg2 = self.model.regFile.getRandReg()
while reg2 == reg1:
reg2 = self.model.regFile.getRandReg()
newInstr = Instr.issue(model = self.model, instrName=instr, rd = reg1, label = label1, dir = "f")
instructions.append(newInstr)
# instructions.append("jal x" + reg1 + ", 1f")
instructions.append("2:")
self.model.pc += 4
newInstr = Instr.issue(model = self.model, instrName=instr, rd = reg2, label = label3, dir = "f")
instructions.append(newInstr)
# instructions.append("jal x" + reg2 + ", 3f")
instructions.append("1:")
self.model.pc += 4
numInstr = np.random.randint(0,6)
for i in range(0, numInstr):
rd = self.model.regFile.getRandReg()
r1 = self.model.regFile.getRandReg()
r2 = self.model.regFile.getRandReg()
instructions.append(Instr.issue(model = self.model, instrName = 'and', rd = rd, rs1 = r1, rs2 = r2))
#test case here
newInstr = Instr.issue(model = self.model, instrName=instr, rd = reg2, label = label2, dir = "b")
instructions.append(newInstr)
# instructions.append("jal x" + reg2 + ", 2b")
instructions.append("3:")
self.model.pc += 4
check_instr = self.genTestInstr(reg1)
for check in check_instr:
instructions.append(check)
# jump to 1
# #2
# jump to 3
# #1
# junk here
# test: jump to 2
# #3
# check answer from 1
return instructions
def jumpRInstruction(self, instr):
# fields, alignment = self.instrDict.instr[instr]
granularity = GRANULARITY.BYTE
divBy = 1
# randomly determine forward or back branch direction
fwd = np.random.randint(0, 2) #fwd on 1, bwd on 0
reg_pc = self.model.regFile.getRandReg()
instructions = []
label1 = Label(name = 1, pcValue = self.model.pc.getValueUnsigned())
label2 = Label(name = 2, pcValue = self.model.pc.getValueUnsigned())
label3 = Label(name = 3, pcValue = self.model.pc.getValueUnsigned())
if fwd == 1:
numInstr = np.random.randint(0, 6)
rs1 = self.model.regFile.getRandReg()
while (rs1 == reg_pc):
rs1 = self.model.regFile.getRandReg()
# TODO fix the value of rs1 - should be pc location of "1f"
rs1.setValue(newValue = 0)
imm = Immediate.setImm12(xlen = self.model.xlen, value = 0)
instructions.append('la {}, {}'.format(rs1.regName , "1f"))
self.model.pc += 8
newInstr = Instr.issue(model = self.model, instrName=instr, rd = reg_pc, rs1 = rs1, imm = imm)
instructions.append(newInstr)
# add random alu instructions after jumping before jump point
reg_check = self.model.regFile.getRandReg()
for i in range(0, numInstr):
rd = self.model.regFile.getRandReg()
while (rd == reg_pc):
rd = self.model.regFile.getRandReg()
reg_check = rd
r1 = self.model.regFile.getRandReg()
r2 = self.model.regFile.getRandReg()
instructions.append(Instr.issue(model = self.model, instrName = "and", rd = rd, rs1 = r1, rs2 = r2))
instructions.append("1:")
self.model.pc += 4
#make sure jump was taken
check_instr = self.genTestInstr(reg_check)
for check in check_instr:
instructions.append(check)
#check value in pc + 4 reg
check_instr = self.genTestInstr(reg_pc)
for check in check_instr:
instructions.append(check)
else:
reg1 = self.model.regFile.getRandReg()
reg2 = self.model.regFile.getRandReg()
while reg2 == reg1:
reg2 = self.model.regFile.getRandReg()
jumpDestVal = self.model.pc.value + 4
newInstr = Instr.issue(model = self.model, instrName='jal', rd = reg1, label = label1, dir = "f")
instructions.append(newInstr)
# instructions.append("jal x" + reg1 + ", 1f")
instructions.append("2:")
self.model.pc += 4
newInstr = Instr.issue(model = self.model, instrName='jal', rd = reg2, label = label3, dir = "f")
instructions.append(newInstr)
# instructions.append("jal x" + reg2 + ", 3f")
instructions.append("1:")
self.model.pc += 4
rs1 = self.model.regFile.getRandReg()
while (rs1 == reg_pc):
rs1 = self.model.regFile.getRandReg()
imm = Immediate.setImm12(xlen = self.model.xlen, value = 0)
instructions.append('la {}, {}'.format(rs1.regName ,"2b"))
self.model.pc += 8
rs1.setValue(newValue = 0) #TODO: this value is wrong, should be address of label
imm = Immediate.setImm12(xlen = self.model.xlen, value = 0)
numInstr = np.random.randint(0,6)
for i in range(0, numInstr):
rd = self.model.regFile.getRandReg()
while(rd == rs1) or (rd == reg_pc):
rd = self.model.regFile.getRandReg()
r1 = self.model.regFile.getRandReg()
r2 = self.model.regFile.getRandReg()
instructions.append(Instr.issue(model = self.model, instrName = 'and', rd = rd, rs1 = r1, rs2 = r2))
#test case here
newInstr = Instr.issue(model = self.model, instrName=instr, rd = reg_pc, rs1 = rs1, imm = imm)
instructions.append(newInstr)
# instructions.append("jal x" + reg2 + ", 2b")
instructions.append("3:")
self.model.pc += 4
check_instr = self.genTestInstr(reg1)
for check in check_instr:
instructions.append(check)
check_instr = self.genTestInstr(reg_pc)
for check in check_instr:
instructions.append(check)
# jump to 1
# #2
# jump to 3
# #1
# junk instructions
# ...
# ...
# test instruction to 2
# #3
# check answer from 1
return instructions
def generateASM(self, instrSet, instrTypes):
generatedInstructions = []
# for memLocation in self.model.memory.memDict.keys():
# memData = self.model.memory.readMemory(addr = memLocation, granularity = GRANULARITY.WORD)
# memDataVal = hex(int(memData, 2))
# generatedInstructions.append('li x2, MASK_XLEN({})'.format(memDataVal))
# self.model.pc += 8
# generatedInstructions.append('li x3, MASK_XLEN({})'.format(memLocation))
# self.model.pc += 8
# generatedInstructions.append('sw x2, 0(x3)')
# self.model.pc += 4
generatedInstructions.append('la x7, test_data')
self.model.pc += 8
for reg in self.model.regFile.regs:
if (int(reg.regName[-1:]) not in self.model.regFile.immutableRegsList) :
immHex = randHex(False, 5, 1)
imm = int(immHex, 16)
reg.setValue(imm)
generatedInstructions.append('li {}, MASK_XLEN({})'.format(reg.getRegName(), immHex))
self.model.pc += 8
elif (reg == self.model.regFile.regs[0]):
immHex = 0
imm = 0
reg.setValue(imm)
generatedInstructions.append('li {}, MASK_XLEN({})'.format(reg.getRegName(), immHex))
self.model.pc += 8
elif (reg == self.model.regFile.regs[6]):
# immHex = 0
# imm = 0
# reg.setValue(imm)
# generatedInstructions.append('la {}, {}'.format(reg.getRegName(), "test_1_res"))
# self.model.pc += 8
pass
for i in range(0, self.numInstr):
# decide which instruction to issue
randInstr = instrSet[randint(0, len(instrSet)-1)]
randNum = randint(0, 2)
if randInstr in InstrTypes['B']:
newInstr = self.branchInstruction(instr = randInstr)
for i in newInstr:
generatedInstructions.append(i)
elif randInstr in InstrTypes['J']:
newInstr = self.jumpInstruction(instr = randInstr)
for i in newInstr:
generatedInstructions.append(i)
elif randInstr[0] == 'l' and randNum == 0 and randInstr != "lui":
newInstr = self.getForwardingInstructions(instr = randInstr)
for i in newInstr:
generatedInstructions.append(i)
else:
if randInstr in InstrTypes['R']:
rd = self.model.regFile.getRandReg()
rs1 = self.model.regFile.getRandReg()
rs2 = self.model.regFile.getRandReg()
instr = Instr.issue(model = self.model, instrName = randInstr, rd = rd, rs1 = rs1, rs2 = rs2)
generatedInstructions.append(instr)
testInstrs = self.genTestInstr(rd)
for testInstr in testInstrs:
generatedInstructions.append(testInstr)
elif randInstr in InstrTypes['I']:
if randInstr == "jalr":
newInstr = self.jumpRInstruction(instr = randInstr)
for i in newInstr:
generatedInstructions.append(i)
# memory instruction
elif randInstr[0] == 'l':
rs1 = self.model.regFile.regs[7]
memLocation = list(self.model.memory.memDict.keys())[randint(0, len(self.model.memory.memDict.keys()) -1)]
if randInstr == "ld":
if ((memLocation + rs1.getValueUnsigned()) % 8) != 0:
if (memLocation != 0):
memLocation -=4
else:
memLocation = 4
rd = self.model.regFile.getRandReg()
imm12 = Immediate.setImm12(xlen = self.model.xlen, value = memLocation)
instr = Instr.issue(model = self.model, instrName = randInstr, rd = rd, rs1 = rs1, imm = imm12)
generatedInstructions.append(instr)
testInstrs = self.genTestInstr(rd)
for testInstr in testInstrs:
generatedInstructions.append(testInstr)
else:
rd = self.model.regFile.getRandReg()
rs1 = self.model.regFile.getRandReg()
imm12 = Immediate.randImm12(xlen = self.model.xlen)
instr = Instr.issue(model = self.model, instrName = randInstr, rd = rd, rs1 = rs1, imm = imm12)
generatedInstructions.append(instr)
testInstrs = self.genTestInstr(rd)
for testInstr in testInstrs:
generatedInstructions.append(testInstr)
elif randInstr in InstrTypes['S']:
rs1 = self.model.regFile.regs[7]
immValue = self.model.memoryImmediateCounter
self.model.memoryImmediateCounter += 4
if randInstr == 'Sd':
if ((immValue + rs1.getValueUnsigned()) % 8) != 0:
immValue -= 4
self.model.memoryImmediateCounter -= 4 #haven't put a value in a new mem locatoin
rs2 = self.model.regFile.getRandReg()
immMem = Immediate.setImm12(xlen = self.model.xlen, value = 2040)
if (self.model.memoryImmediateCounter == 2040):
self.model.memoryImmediateCounter = 0
generatedInstructions.append(Instr.issue(model = self.model, instrName = "addi" , rd = rs1, rs1 = rs1, imm = immMem))
imm12 = Immediate.setImm12(xlen = self.model.xlen, value = immValue)
instr = Instr.issue(model = self.model, instrName = randInstr, rs1 = rs1, rs2 = rs2, imm = imm12)
generatedInstructions.append(instr)
elif randInstr in InstrTypes['U']:
rd = self.model.regFile.getRandReg()
imm20 = Immediate.randImm20(xlen = self.model.xlen, signed = 0)
instr = Instr.issue(model = self.model, instrName = randInstr, rd = rd, imm = imm20)
generatedInstructions.append(instr)
testInstrs = self.genTestInstr(rd)
for testInstr in testInstrs:
generatedInstructions.append(testInstr)
elif randInstr in InstrTypes['R4']:
continue
else:
# INVALID INSTR
print(randInstr)
print("You made a typo")
return generatedInstructions
def exportASM(self, instrSet, instrTypes):
asmFile = open(self.fname, 'w')
refFile = open(self.refname, 'w')
# Custom Header
line = "///////////////////////////////////////////\n"
asmFile.write(line)
line ="// "+self.fname+ "\n// " + "Ethan Falicov & Shriya Nadgauda" + "\n"
asmFile.write(line)
line ="// Created " + str(datetime.now()) + "\n" + "\n"
asmFile.write(line)
line = "// Begin Tests" + "\n"
asmFile.write(line)
# Generic Header
headerFile = open("testgen_header.S", "r")
for line in headerFile:
asmFile.write(line)
asmFile.write("\n")
# Write Instructions
generatedInstructions = self.generateASM(instrSet = INSTRSETS[instrSet], instrTypes = instrType)
for generatedInstr in generatedInstructions:
asmFile.write("\t" + generatedInstr + "\n")
if ("RVTEST_IO_ASSERT_GPR_EQ" in generatedInstr):
asmFile.write("\n")
# Footer
footerFile = open("testgen_footer.S", "r")
lineNum = 0
for line in footerFile:
asmFile.write(line)
if lineNum == 14:
asmFile.write('test_data:\n')
memList = list(self.model.memory.memDict.keys())
memList.sort()
paddingSize = 0
for memLoc in memList:
hexVal = int(self.model.memory.memDict[memLoc],2)
hexDigitSize = self.model.xlen / 4
formattedStr = '0x{0:0{1}x}'.format(hexVal, hexDigitSize)
if self.model.xlen == 64:
asmFile.write('\t.dword {}\n'.format(formattedStr))
else:
asmFile.write('\t.word {}\n'.format(formattedStr))
lineNum += 1
asmFile.write("\n")
line = "\t.fill " + str(self.model.totalStoreCount) + ", " + str(self.xlen//8) + ", -1\n"
asmFile.write(line)
asmFile.write("\n")
line = "\nRV_COMPLIANCE_DATA_END\n"
asmFile.write(line)
asmFile.close()
refFile.close()
class Instr():
@classmethod
def issue(self, model, instrName, **kwargs):
funcName = 'Instr_' + str(instrName)
return getattr(Instr, funcName)(model = model, **kwargs)
@classmethod
def Instr_label(self, model, label = None):
label.pcValue = model.pc.value
model.pc += 4
return '{}:'.format(label.name)
###############################################################################################
# RV32I Instructions
###############################################################################################
@classmethod
def Instr_lb(self, model, rd = None, rs1 = None, imm = None):
addr = imm.getDecValue()
rd.setBits(newBits = signExtend(model.memory.readMemory(addr = addr, granularity = GRANULARITY.BYTE), \
resultNumBits = model.xlen))
model.pc += 4
return 'lb {}, {}({})'.format(rd.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_lh(self, model, rd = None, rs1 = None, imm = None):
addr = imm.getDecValue()
rd.setBits(newBits = signExtend(model.memory.readMemory(addr = addr, granularity = GRANULARITY.HALFWORD), \
resultNumBits = model.xlen))
model.pc += 4
return 'lh {}, {}({})'.format(rd.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_lw(self, model, rd = None, rs1 = None, imm = None):
addr = imm.getDecValue()
rd.setBits(newBits = signExtend(model.memory.readMemory(addr = addr, granularity = GRANULARITY.WORD), \
resultNumBits = model.xlen))
model.pc += 4
return 'lw {}, {}({})'.format(rd.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_lbu(self, model, rd = None, rs1 = None, imm = None):
addr = imm.getDecValue()
rd.setBits(newBits = zeroExtend(model.memory.readMemory(addr = addr, granularity = GRANULARITY.BYTE), \
resultNumBits = model.xlen))
model.pc += 4
return 'lbu {}, {}({})'.format(rd.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_lhu(self, model, rd = None, rs1 = None, imm = None):
addr = imm.getDecValue()
rd.setBits(newBits = zeroExtend(model.memory.readMemory(addr = addr, granularity = GRANULARITY.HALFWORD), \
resultNumBits = model.xlen))
model.pc += 4
return 'lhu {}, {}({})'.format(rd.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_addi(self, model, rd = None, rs1 = None, imm = None):
newValue = rs1.getDecValue() + imm.getDecValue()
newValueBin = 0
if newValue > 0:
newValueBin = bin(newValue)[2:]
elif newValue == 0:
newValueBin = "0" * model.xlen
else:
newValueBin = bin(newValue)[3:]
newValueBinTrunk = newValueBin[-model.xlen:]
rd.setBits(newBits = signExtend(inputBits = newValueBinTrunk, resultNumBits = model.xlen), signed = 1)
model.pc += 4
return 'addi {}, {}, MASK_XLEN({})'.format(rd.getRegName(), rs1.getRegName(), imm.getDecValue())
@classmethod
def Instr_slli(self, model, rd = None, rs1 = None, imm = None):
bits = rs1.bits
immBits = imm.bits[-5:]
immShift = int(immBits, 2)
shifted = bits[-(len(bits) - immShift):]
shiftedExt = binToDec(inputBits = shifted + '0'*(model.xlen - len(shifted)))
rd.setValue(newValue = shiftedExt, signed = 1)
model.pc += 4
return 'slli {}, {}, 0b{}'.format(rd.getRegName(), rs1.getRegName(), immBits)
@classmethod
def Instr_slti(self, model, rd = None, rs1 = None, imm = None):
if (rs1.getValueSigned() < imm.getValueSigned()):
rd.setValue(newValue = 1, signed = 1)
else:
rd.setValue(newValue = 0, signed = 1)
model.pc += 4
return 'slti {}, {}, SEXT_IMM({})'.format(rd.getRegName(), rs1.getRegName(), imm.getDecValue())
@classmethod
def Instr_sltiu(self, model, rd = None, rs1 = None, imm = None):
if (rs1.getValueUnsigned() < imm.getValueUnsigned()):
rd.setValue(newValue = 1, signed = 1)
else:
rd.setValue(newValue = 0, signed = 1)
model.pc += 4
return 'slti {}, {}, SEXT_IMM({})'.format(rd.getRegName(),rs1.getRegName(), imm.getDecValue())
@classmethod
def Instr_xori(self, model, rd = None, rs1 = None, imm = None):
newValue = rs1.getDecValue() ^ imm.getDecValue()
rd.setValue(newValue = newValue, signed = rs1.signed)
model.pc += 4
return 'xori {}, {}, SEXT_IMM({})'.format(rd.getRegName(), rs1.getRegName(), imm.getDecValue())
@classmethod
def Instr_srli(self, model, rd = None, rs1 = None, imm = None):
bits = rs1.bits
immBits = imm.bits[-5:]
immShift = int(immBits, 2)
shifted = bits[0:len(bits) - immShift]
extShifted = zeroExtend(inputBits = shifted, resultNumBits = model.xlen)
rd.setBits(newBits = extShifted, signed = 1)
model.pc += 4
return 'srli {}, {}, 0b{}'.format(rd.getRegName(), rs1.getRegName(), immBits)
@classmethod
def Instr_srai(self, model, rd = None, rs1 = None, imm = None):
bits = rs1.bits
immBits = imm.bits[-5:]
immShift = int(immBits, 2)
shifted = bits[0:len(bits) - immShift]
extShifted = signExtend(inputBits = shifted, resultNumBits = model.xlen)
rd.setBits(newBits = extShifted, signed = 1)
model.pc += 4
return 'srai {}, {}, 0b{}'.format(rd.getRegName(), rs1.getRegName(), immBits)
@classmethod
def Instr_ori(self, model, rd = None, rs1 = None, imm = None):
rd.setValue(newValue = (rs1.getDecValue() | imm.getDecValue()), signed = rs1.signed)
return 'ori {}, {}, SEXT_IMM({})'.format(rd.getRegName(), rs1.getRegName(), imm.getDecValue())
@classmethod
def Instr_andi(self, model, rd = None, rs1 = None, imm = None):
rd.setValue(newValue = (rs1.getDecValue() & imm.getDecValue()), signed = rs1.signed)
return 'andi {}, {}, SEXT_IMM({})'.format(rd.getRegName(), rs1.getRegName(), imm.getDecValue())
@classmethod
def Instr_auipc(self, model, rd = None, imm = None):
rd.setValue(newValue = binToDec(inputBits = imm.bits[:-12] + '0'*12) + model.pc.getDecValue(), signed = 1)
return 'auipc {}, MASK_XLEN({})'.format(rd.getRegName(), imm.getDecValue())
@classmethod
def Instr_sb(self, model, rs1 = None, rs2 = None, imm = None):
addr = imm.getDecValue()
if addr in model.memory.memDict.keys():
originalMem = model.memory.readMemory(addr = addr, granularity = GRANULARITY.WORD)
model.memory.updateMemory(addr = addr, value = originalMem[:-8] + rs2.bits[-8:], granularity = GRANULARITY.WORD)
else:
model.memory.updateMemory(addr = addr, value = '0'*(model.xlen - 8) + rs2.bits[-8:], granularity = GRANULARITY.WORD)
model.pc += 4
return 'sb {}, {}({})'.format(rs2.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_sh(self, model, rs1 = None, rs2 = None, imm = None):
addr = imm.getDecValue()
if addr in model.memory.memDict.keys():
originalMem = model.memory.readMemory(addr = addr, granularity = GRANULARITY.WORD)
model.memory.updateMemory(addr = addr, value = originalMem[:-16] + rs2.bits[-16:], granularity = GRANULARITY.WORD)
else:
model.memory.updateMemory(addr = addr, value = '0'*(model.xlen - 16) + rs2.bits[-16:], granularity = GRANULARITY.WORD)
model.pc += 4
return 'sh {}, {}({})'.format(rs2.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_sw(self, model, rs1 = None, rs2 = None, imm = None):
addr = imm.getDecValue()
model.memory.updateMemory(addr = addr, value = rs2.bits, granularity = GRANULARITY.WORD)
model.pc += 4
return 'sw {}, {}({})'.format(rs2.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_add(self, model, rd = None, rs1 = None, rs2 = None):
newValue = rs1.getDecValue() + rs2.getDecValue()
newValueBin = 0
if newValue > 0:
newValueBin = bin(newValue)[2:]
elif newValue == 0:
newValueBin = "0" * model.xlen
else:
newValueBin = bin(newValue)[3:]
newValueBinTrunk = newValueBin[-model.xlen:]
rd.setBits(newBits = signExtend(inputBits = newValueBinTrunk, resultNumBits = model.xlen), signed = 1)
model.pc += 4
return 'add {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_sub(self, model, rd = None, rs1 = None, rs2 = None):
newValue = rs1.getDecValue() - rs2.getDecValue()
newValueBin = 0
if newValue > 0:
newValueBin = bin(newValue)[2:]
elif newValue == 0:
newValueBin = "0" * model.xlen
else:
newValueBin = bin(newValue)[3:]
newValueBinTrunk = newValueBin[-model.xlen:]
rd.setBits(newBits = signExtend(inputBits = newValueBinTrunk, resultNumBits = model.xlen), signed = 1)
model.pc += 4
return 'sub {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_sll(self, model, rd = None, rs1 = None, rs2 = None):
bits = rs1.bits
rs2Bin = rs2.bits[-5:]
rs2Shift = int(rs2Bin,2)
shifted = bits[-(len(bits) - rs2Shift):]
shiftedExt = binToDec(inputBits = shifted + '0'*(model.xlen - len(shifted)))
rd.setValue(newValue = shiftedExt, signed = 1)
model.pc += 4
return 'sll {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_slt(self, model, rd = None, rs1 = None, rs2 = None):
if (rs1.getDecValue() < rs2.getDecValue()):
rd.setValue(newValue = 1, signed = 1)
else:
rd.setValue(newValue = 0, signed = 1)
model.pc += 4
return 'slt {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_sltu(self, model, rd = None, rs1 = None, rs2 = None):
if (rs1.getValueUnsigned() < rs2.getValueUnsigned()):
rd.setValue(newValue = 1, signed = 1)
else:
rd.setValue(newValue = 0, signed = 1)
model.pc += 4
return 'sltu {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_xor(self, model, rd = None, rs1 = None, rs2 = None):
rd.setValue(newValue = (rs1.getDecValue() ^ rs2.getDecValue()), signed = rs1.signed)
model.pc += 4
return 'xor {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_srl(self, model, rd = None, rs1 = None, rs2 = None):
bits = rs1.bits
rs2Bin = rs2.bits[-5:]
rs2Shift = int(rs2Bin,2)
shifted = bits[0:len(bits) - rs2Shift]
extShifted = zeroExtend(inputBits = shifted, resultNumBits = model.xlen)
rd.setBits(newBits = extShifted, signed = 1)
model.pc += 4
return 'srl {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_sra(self, model, rd = None, rs1 = None, rs2 = None):
bits = rs1.bits
rs2Bin = rs2.bits[-5:]
rs2Shift = int(rs2Bin,2)
shifted = bits[0:len(bits) - rs2Shift]
extShifted = signExtend(inputBits = shifted, resultNumBits = model.xlen)
rd.setBits(newBits = extShifted, signed = 1)
model.pc += 4
return 'sra {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_or(self, model, rd = None, rs1 = None, rs2 = None):
rd.setValue(newValue = (rs1.getDecValue() | rs2.getDecValue()), signed = rs1.signed)
model.pc += 4
return 'or {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_and(self, model, rd = None, rs1 = None, rs2 = None):
rd.setValue(newValue = (rs1.getDecValue() & rs2.getDecValue()), signed = rs1.signed)
model.pc += 4
return 'and {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_lui(self, model, rd = None, imm = None):
rd.setValue(newValue = binToDec(inputBits = imm.bits[:20] + '0'*(model.xlen-20)) , signed = 1)
model.pc += 4
return 'lui {}, {}'.format(rd.getRegName(), imm.getDecValue())
@classmethod
def Instr_beq(self, model, rs1 = None, rs2 = None, label = None, dir = None):
if (rs1.getValueSigned() == rs2.getValueSigned()):
model.pc.setValue(label.pcValue)
else:
model.pc += 4
return 'beq {}, {}, {}{}'.format(rs1.getRegName(), rs2.getRegName(), label.name, dir)
@classmethod
def Instr_bne(self, model, rs1 = None, rs2 = None, label = None, dir = None):
if (rs1.getValueSigned() != rs2.getValueSigned()):
model.pc.setValue(label.pcValue)
else:
model.pc += 4
return 'bne {}, {}, {}{}'.format(rs1.getRegName(), rs2.getRegName(), label.name, dir)
@classmethod
def Instr_blt(self, model, rs1 = None, rs2 = None, label = None, dir = None):
if (rs1.getValueSigned() < rs2.getValueSigned()):
model.pc.setValue(label.pcValue)
else:
model.pc += 4
return 'blt {}, {}, {}{}'.format(rs1.getRegName(), rs2.getRegName(), label.name, dir)
@classmethod
def Instr_bge(self, model, rs1 = None, rs2 = None, label = None, dir = None):
if (rs1.getValueSigned() >= rs2.getValueSigned()):
model.pc.setValue(label.pcValue)
else:
model.pc += 4
return 'bge {}, {}, {}{}'.format(rs1.getRegName(), rs2.getRegName(), label.name, dir)
@classmethod
def Instr_bltu(self, model, rs1 = None, rs2 = None, label = None, dir = None):
if (rs1.getValueUnsigned() < rs2.getValueUnsigned()):
model.pc.setValue(label.pcValue)
else:
model.pc += 4
return 'bltu {}, {}, {}{}'.format(rs1.getRegName(), rs2.getRegName(), label.name, dir)
@classmethod
def Instr_bgeu(self, model, rs1 = None, rs2 = None, label = None, dir = None):
if (rs1.getValueUnsigned() >= rs2.getValueUnsigned()):
model.pc.setValue(label.pcValue)
else:
model.pc += 4
return 'bgeu {}, {}, {}{}'.format(rs1.getRegName(), rs2.getRegName(), label.name, dir)
@classmethod
def Instr_jalr(self, model, rd = None, rs1 = None, imm = None):
rd.setValue(newValue = model.pc.getDecValue() + 4, signed = 1)
model.pc.setValue(rs1.getDecValue() + imm.getDecValue())
return 'jalr {}, {}, MASK_XLEN({})'.format(rd.getRegName(), rs1.getRegName(), imm.getDecValue())
@classmethod
def Instr_jal(self, model, rd = None, label = None, dir = None):
rd.setValue(newValue = model.pc.getDecValue() + 4, signed = 1)
model.pc.setValue(label.pcValue)
return 'jal {}, {}{}'.format(rd.getRegName(), label.name, dir)
###################################################################################################
# RV 64I
###################################################################################################
#TODO These may not keep the internal model consistent. You have been warned...sorry lol
@classmethod
def Instr_ld(self, model, rd = None, rs1 = None, imm = None):
addr = imm.getDecValue()
rd.setBits(newBits = signExtend(model.memory.readMemory(addr = addr, granularity = GRANULARITY.WORD), \
resultNumBits = model.xlen))
model.pc += 4
return 'ld {}, {}({})'.format(rd.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_lwu(self, model, rd = None, rs1 = None, imm = None):
addr = imm.getDecValue()
rd.setBits(newBits = zeroExtend(model.memory.readMemory(addr = addr, granularity = GRANULARITY.BYTE), \
resultNumBits = model.xlen))
model.pc += 4
return 'lwu {}, {}({})'.format(rd.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_addiw(self, model, rd = None, rs1 = None, imm = None):
newValue = rs1.getDecValue() + imm.getDecValue()
newValueBin = 0
if newValue > 0:
newValueBin = bin(newValue)[2:]
elif newValue == 0:
newValueBin = "0" * model.xlen
else:
newValueBin = bin(newValue)[3:]
newValueBinTrunk = newValueBin[-model.xlen:]
rd.setBits(newBits = signExtend(inputBits = newValueBinTrunk, resultNumBits = model.xlen), signed = 1)
model.pc += 4
return 'addiw {}, {}, MASK_XLEN({})'.format(rd.getRegName(), rs1.getRegName(), imm.getDecValue())
@classmethod
def Instr_slliw(self, model, rd = None, rs1 = None, imm = None):
bits = rs1.bits
immBits = imm.bits[-5:]
immShift = int(immBits, 2)
shifted = bits[-(len(bits) - immShift):]
shiftedExt = binToDec(inputBits = shifted + '0'*(model.xlen - len(shifted)))
rd.setValue(newValue = shiftedExt, signed = 1)
model.pc += 4
return 'slliw {}, {}, 0b{}'.format(rd.getRegName(), rs1.getRegName(), immBits)
@classmethod
def Instr_srliw(self, model, rd = None, rs1 = None, imm = None):
bits = rs1.bits
immBits = imm.bits[-5:]
immShift = int(immBits, 2)
shifted = bits[0:len(bits) - immShift]
extShifted = zeroExtend(inputBits = shifted, resultNumBits = model.xlen)
rd.setBits(newBits = extShifted, signed = 1)
model.pc += 4
return 'srliw {}, {}, 0b{}'.format(rd.getRegName(), rs1.getRegName(), immBits)
@classmethod
def Instr_sraiw(self, model, rd = None, rs1 = None, imm = None):
bits = rs1.bits
immBits = imm.bits[-5:]
immShift = int(immBits, 2)
shifted = bits[0:len(bits) - immShift]
extShifted = signExtend(inputBits = shifted, resultNumBits = model.xlen)
rd.setBits(newBits = extShifted, signed = 1)
model.pc += 4
return 'sraiw {}, {}, 0b{}'.format(rd.getRegName(), rs1.getRegName(), immBits)
@classmethod
def Instr_Sd(self, model, rs1 = None, rs2 = None, imm = None):
addr = imm.getDecValue()
model.memory.updateMemory(addr = addr, value = rs2.bits, granularity = GRANULARITY.WORD)
model.pc += 4
return 'Sd {}, {}({})'.format(rs2.getRegName(), imm.getDecValue(), rs1.getRegName())
@classmethod
def Instr_addw(self, model, rd = None, rs1 = None, rs2 = None):
newValue = rs1.getDecValue() + rs2.getDecValue()
newValueBin = 0
if newValue > 0:
newValueBin = bin(newValue)[2:]
elif newValue == 0:
newValueBin = "0" * model.xlen
else:
newValueBin = bin(newValue)[3:]
newValueBinTrunk = newValueBin[-model.xlen:]
rd.setBits(newBits = signExtend(inputBits = newValueBinTrunk, resultNumBits = model.xlen), signed = 1)
model.pc += 4
return 'addw {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_subw(self, model, rd = None, rs1 = None, rs2 = None):
newValue = rs1.getDecValue() - rs2.getDecValue()
newValueBin = 0
if newValue > 0:
newValueBin = bin(newValue)[2:]
elif newValue == 0:
newValueBin = "0" * model.xlen
else:
newValueBin = bin(newValue)[3:]
newValueBinTrunk = newValueBin[-model.xlen:]
rd.setBits(newBits = signExtend(inputBits = newValueBinTrunk, resultNumBits = model.xlen), signed = 1)
model.pc += 4
return 'subw {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_sllw(self, model, rd = None, rs1 = None, rs2 = None):
bits = rs1.bits
rs2Bin = rs2.bits[-5:]
rs2Shift = int(rs2Bin,2)
shifted = bits[-(len(bits) - rs2Shift):]
shiftedExt = binToDec(inputBits = shifted + '0'*(model.xlen - len(shifted)))
rd.setValue(newValue = shiftedExt, signed = 1)
model.pc += 4
return 'sllw {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_srlw(self, model, rd = None, rs1 = None, rs2 = None):
bits = rs1.bits
rs2Bin = rs2.bits[-5:]
rs2Shift = int(rs2Bin,2)
shifted = bits[0:len(bits) - rs2Shift]
extShifted = zeroExtend(inputBits = shifted, resultNumBits = model.xlen)
rd.setBits(newBits = extShifted, signed = 1)
model.pc += 4
return 'srlw {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
@classmethod
def Instr_sraw(self, model, rd = None, rs1 = None, rs2 = None):
bits = rs1.bits
rs2Bin = rs2.bits[-5:]
rs2Shift = int(rs2Bin,2)
shifted = bits[0:len(bits) - rs2Shift]
extShifted = signExtend(inputBits = shifted, resultNumBits = model.xlen)
rd.setBits(newBits = extShifted, signed = 1)
model.pc += 4
return 'sraw {}, {}, {}'.format(rd.getRegName(), rs1.getRegName(), rs2.getRegName())
###################################################################################################
# Global Constants
###################################################################################################
GRANULARITY = Enum('granularity', ['WORD', 'HALFWORD', 'BYTE'])
# 'jalr',
INSTRSETS = {'RV32I': ['lb', 'lh', 'lw', 'lbu', 'lhu', 'addi', 'slli', 'slti', 'sltiu', 'xori', \
'srli', 'srai', 'ori', 'andi', 'auipc', 'sb', 'sh', 'sw', 'add', 'sub', \
'sll', 'slt', 'sltu', 'xor', 'srl', 'sra', 'or', 'and', 'lui', 'beq', \
'bne', 'blt', 'bge', 'bltu', 'bgeu', 'jal', 'jalr'], \
'RV64I': ['lb', 'lh', 'lw', 'lbu', 'lhu', 'addi', 'slli', 'slti', 'sltiu', 'xori', \
'srli', 'srai', 'ori', 'andi', 'auipc', 'sb', 'sh', 'sw', 'add', 'sub', \
'sll', 'slt', 'sltu', 'xor', 'srl', 'sra', 'or', 'and', 'lui', 'beq', \
'bne', 'blt', 'bge', 'bltu', 'bgeu', 'jalr', 'jal', \
'ld', 'lwu', 'addiw', 'slliw', 'srliw', 'sraiw', 'Sd', 'addw', 'subw', \
'sllw', 'srlw', 'sraw'] \
}
InstrTypes = { 'R' : ['add', 'sub', 'sll', 'slt', 'sltu', 'xor', 'srl', 'sra', 'or', 'and', \
'addw', 'subw', 'sllw', 'srlw', 'sraw'], \
'I' : ['lb', 'lh', 'lw', 'lbu', 'lhu', 'addi', 'slli', 'slti', 'sltiu', 'xori', 'srli', 'srai', 'ori', 'andi', 'jalr', \
'ld', 'lwu', 'addiw', 'slliw', 'srliw', 'sraiw'], \
'S' : ['sw', 'sh', 'sb', 'Sd'], \
'B' : ['beq', 'bne', 'blt', 'bge', 'bltu', 'bgeu'], \
'U' : ['lui', 'auipc'], \
'J' : ['jal'], \
'R4': []}
###################################################################################################
# Main Body
###################################################################################################
XLEN = ['32', '64']
INSTRUCTION_TYPE = ['I']
NUMINSTR = [100000, 1000000]
IMPERASPATH = "../../imperas-riscv-tests/riscv-test-suite/"
seed(42)
np.random.seed(42)
for num_instructions in NUMINSTR:
for xlen in XLEN:
memInit = {}
for i in range(0, 400, 4):
val = randBinary(signed = 0, numBits = int(xlen), valueAlignment = 1)
memInit[i] = val
for instrType in INSTRUCTION_TYPE:
instrSet = 'RV' + xlen + instrType
print('Generating {} Assembly Instructions for {}'.format(num_instructions, instrSet))
dut = TestGen(numInstr=num_instructions, immutableRegsDict = {0 : 0, 6 : 0, 7 : 0}, instrSet=instrSet, imperasPath=IMPERASPATH)
# regFile =
dut.model.memory.populateMemory(memDict = memInit)
dut.exportASM(instrSet = instrSet, instrTypes = instrType)