mirror of
https://github.com/openhwgroup/cvw
synced 2025-01-24 13:34:28 +00:00
356 lines
8.6 KiB
Systemverilog
356 lines
8.6 KiB
Systemverilog
///////////////////////////////////////////////////////
|
|
// srt.sv //
|
|
// //
|
|
// Written 10/31/96 by David Harris harrisd@leland //
|
|
// Updated 10/19/21 David_Harris@hmc.edu //
|
|
// //
|
|
// This file models a simple Radix 2 SRT divider. //
|
|
// //
|
|
///////////////////////////////////////////////////////
|
|
|
|
// This Verilog file models a radix 2 SRT divider which
|
|
// produces one quotient digit per cycle. The divider
|
|
// keeps the partial remainder in carry-save form.
|
|
|
|
/////////
|
|
// srt //
|
|
/////////
|
|
module srt(input logic clk,
|
|
input logic req,
|
|
input logic sqrt, // 1 to compute sqrt(a), 0 to compute a/b
|
|
input logic [51:0] a, b,
|
|
output logic [54:0] rp, rm);
|
|
|
|
// A simple Radix 2 SRT divider/sqrt
|
|
|
|
|
|
// Internal signals
|
|
|
|
logic [55:0] ps, pc; // partial remainder in carry-save form
|
|
logic [55:0] d; // divisor
|
|
logic [55:0] psa, pca; // partial remainder result of csa
|
|
logic [55:0] psn, pcn; // partial remainder for next cycle
|
|
logic [55:0] dn; // divisor for next cycle
|
|
logic [55:0] dsel; // selected divisor multiple
|
|
logic qp, qz, qm; // quotient is +1, 0, or -1
|
|
logic [55:0] d_b; // inverse of divisor
|
|
|
|
// Top Muxes and Registers
|
|
// When start is asserted, the inputs are loaded into the divider.
|
|
// Otherwise, the divisor is retained and the partial remainder
|
|
// is fed back for the next iteration.
|
|
mux2 psmux({psa[54:0], 1'b0}, {4'b0001, a}, req, psn);
|
|
flop psflop(clk, psn, ps);
|
|
mux2 pcmux({pca[54:0], 1'b0}, 56'b0, req, pcn);
|
|
flop pcflop(clk, pcn, pc);
|
|
mux2 dmux(d, {4'b0001, b}, req, dn);
|
|
flop dflop(clk, dn, d);
|
|
|
|
// Quotient Selection logic
|
|
// Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
|
|
// Accumulate quotient digits in a shift register
|
|
qsel qsel(ps[55:52], pc[55:52], qp, qz, qm);
|
|
qacc qacc(clk, req, qp, qz, qm, rp, rm);
|
|
|
|
// Divisor Selection logic
|
|
inv dinv(d, d_b);
|
|
mux3 divisorsel(d_b, 56'b0, d, qp, qz, qm, dsel);
|
|
|
|
// Partial Product Generation
|
|
csa csa(ps, pc, dsel, qp, psa, pca);
|
|
endmodule
|
|
|
|
//////////
|
|
// mux2 //
|
|
//////////
|
|
module mux2(input logic [55:0] in0, in1,
|
|
input logic sel,
|
|
output logic [55:0] out);
|
|
|
|
assign #1 out = sel ? in1 : in0;
|
|
endmodule
|
|
|
|
//////////
|
|
// flop //
|
|
//////////
|
|
module flop(clk, in, out);
|
|
input clk;
|
|
input [55:0] in;
|
|
output [55:0] out;
|
|
|
|
logic [55:0] state;
|
|
|
|
always @(posedge clk)
|
|
state <= #1 in;
|
|
|
|
assign #1 out = state;
|
|
endmodule
|
|
|
|
//////////
|
|
// qsel //
|
|
//////////
|
|
module qsel(input logic [55:52] ps, pc,
|
|
output logic qp, qz, qm);
|
|
|
|
logic [55:52] p, g;
|
|
logic magnitude, sign, cout;
|
|
|
|
// The quotient selection logic is presented for simplicity, not
|
|
// for efficiency. You can probably optimize your logic to
|
|
// select the proper divisor with less delay.
|
|
|
|
// Quotient equations from EE371 lecture notes 13-20
|
|
assign p = ps ^ pc;
|
|
assign g = ps & pc;
|
|
|
|
assign #1 magnitude = ~(&p[54:52]);
|
|
assign #1 cout = g[54] | (p[54] & (g[53] | p[53] & g[52]));
|
|
assign #1 sign = p[55] ^ cout;
|
|
/* assign #1 magnitude = ~((ps[54]^pc[54]) & (ps[53]^pc[53]) &
|
|
(ps[52]^pc[52]));
|
|
assign #1 sign = (ps[55]^pc[55])^
|
|
(ps[54] & pc[54] | ((ps[54]^pc[54]) &
|
|
(ps[53]&pc[53] | ((ps[53]^pc[53]) &
|
|
(ps[52]&pc[52]))))); */
|
|
|
|
// Produce quotient = +1, 0, or -1
|
|
assign #1 qp = magnitude & ~sign;
|
|
assign #1 qz = ~magnitude;
|
|
assign #1 qm = magnitude & sign;
|
|
endmodule
|
|
|
|
//////////
|
|
// qacc //
|
|
//////////
|
|
module qacc(clk, req, qp, qz, qm, rp, rm);
|
|
input clk;
|
|
input req;
|
|
input qp;
|
|
input qz;
|
|
input qm;
|
|
output [54:0] rp;
|
|
output [54:0] rm;
|
|
|
|
logic [54:0] rp, rm; // quotient bit is +/- 1;
|
|
logic [7:0] count;
|
|
|
|
always @(posedge clk)
|
|
begin
|
|
if (req)
|
|
begin
|
|
rp <= #1 0;
|
|
rm <= #1 0;
|
|
end
|
|
else
|
|
begin
|
|
rp <= #1 {rp[54:0], qp};
|
|
rm <= #1 {rm[54:0], qm};
|
|
end
|
|
end
|
|
endmodule
|
|
|
|
/////////
|
|
// inv //
|
|
/////////
|
|
module inv(input logic [55:0] in,
|
|
output logic [55:0] out);
|
|
|
|
assign #1 out = ~in;
|
|
endmodule
|
|
|
|
//////////
|
|
// mux3 //
|
|
//////////
|
|
module mux3(in0, in1, in2, sel0, sel1, sel2, out);
|
|
input [55:0] in0;
|
|
input [55:0] in1;
|
|
input [55:0] in2;
|
|
input sel0;
|
|
input sel1;
|
|
input sel2;
|
|
output [55:0] out;
|
|
|
|
// lazy inspection of the selects
|
|
// really we should make sure selects are mutually exclusive
|
|
assign #1 out = sel0 ? in0 : (sel1 ? in1 : in2);
|
|
endmodule
|
|
|
|
/////////
|
|
// csa //
|
|
/////////
|
|
module csa(in1, in2, in3, cin, out1, out2);
|
|
input [55:0] in1;
|
|
input [55:0] in2;
|
|
input [55:0] in3;
|
|
input cin;
|
|
output [55:0] out1;
|
|
output [55:0] out2;
|
|
|
|
// This block adds in1, in2, in3, and cin to produce
|
|
// a result out1 / out2 in carry-save redundant form.
|
|
// cin is just added to the least significant bit and
|
|
// is required to handle adding a negative divisor.
|
|
// Fortunately, the carry (out2) is shifted left by one
|
|
// bit, leaving room in the least significant bit to
|
|
// insert cin.
|
|
|
|
assign #1 out1 = in1 ^ in2 ^ in3;
|
|
assign #1 out2 = {in1[54:0] & (in2[54:0] | in3[54:0]) |
|
|
(in2[54:0] & in3[54:0]), cin};
|
|
endmodule
|
|
|
|
//////////////
|
|
// finaladd //
|
|
//////////////
|
|
module finaladd(rp, rm, r);
|
|
input [54:0] rp;
|
|
input [54:0] rm;
|
|
output [51:0] r;
|
|
|
|
logic [54:0] diff;
|
|
|
|
// this magic block performs the final addition for you
|
|
// to convert the positive and negative quotient digits
|
|
// into a normalized mantissa. It returns the 52 bit
|
|
// mantissa after shifting to guarantee a leading 1.
|
|
// You can assume this block operates in one cycle
|
|
// and do not need to budget it in your area and power
|
|
// calculations.
|
|
|
|
// Since no rounding is performed, the result may be too
|
|
// small by one unit in the least significant place (ulp).
|
|
// The checker ignores such an error.
|
|
|
|
assign #1 diff = rp - rm;
|
|
assign #1 r = diff[54] ? diff[53:2] : diff[52:1];
|
|
endmodule
|
|
|
|
/////////////
|
|
// counter //
|
|
/////////////
|
|
module counter(input logic clk,
|
|
input logic req,
|
|
output logic done);
|
|
|
|
logic [5:0] count;
|
|
|
|
// This block of control logic sequences the divider
|
|
// through its iterations. You may modify it if you
|
|
// build a divider which completes in fewer iterations.
|
|
// You are not responsible for the (trivial) circuit
|
|
// design of the block.
|
|
|
|
always @(posedge clk)
|
|
begin
|
|
if (count == 54) done <= #1 1;
|
|
else if (done | req) done <= #1 0;
|
|
if (req) count <= #1 0;
|
|
else count <= #1 count+1;
|
|
end
|
|
endmodule
|
|
|
|
///////////
|
|
// clock //
|
|
///////////
|
|
module clock(clk);
|
|
output clk;
|
|
|
|
// Internal clk signal
|
|
logic clk;
|
|
|
|
endmodule
|
|
|
|
//////////
|
|
// testbench //
|
|
//////////
|
|
module testbench;
|
|
logic clk;
|
|
logic req;
|
|
logic done;
|
|
logic [51:0] a;
|
|
logic [51:0] b;
|
|
logic [51:0] r;
|
|
logic [54:0] rp, rm; // positive quotient digits
|
|
|
|
// Test parameters
|
|
parameter MEM_SIZE = 40000;
|
|
parameter MEM_WIDTH = 52+52+52;
|
|
|
|
`define memr 51:0
|
|
`define memb 103:52
|
|
`define mema 155:104
|
|
|
|
// Test logicisters
|
|
logic [MEM_WIDTH-1:0] Tests [0:MEM_SIZE]; // Space for input file
|
|
logic [MEM_WIDTH-1:0] Vec; // Verilog doesn't allow direct access to a
|
|
// bit field of an array
|
|
logic [51:0] correctr, nextr;
|
|
integer testnum, errors;
|
|
|
|
// Divider
|
|
srt srt(clk, req, a, b, rp, rm);
|
|
|
|
// Final adder converts quotient digits to 2's complement & normalizes
|
|
finaladd finaladd(rp, rm, r);
|
|
|
|
// Counter
|
|
counter counter(clk, req, done);
|
|
|
|
|
|
initial
|
|
forever
|
|
begin
|
|
clk = 1; #17;
|
|
clk = 0; #16;
|
|
end
|
|
|
|
|
|
// Read test vectors from disk
|
|
initial
|
|
begin
|
|
testnum = 0;
|
|
errors = 0;
|
|
$readmemh ("testvectors", Tests);
|
|
Vec = Tests[testnum];
|
|
a = Vec[`mema];
|
|
b = Vec[`memb];
|
|
nextr = Vec[`memr];
|
|
req <= #5 1;
|
|
end
|
|
|
|
// Apply directed test vectors read from file.
|
|
|
|
always @(posedge clk)
|
|
begin
|
|
if (done)
|
|
begin
|
|
req <= #5 1;
|
|
$display("result was %h, should be %h\n", r, correctr);
|
|
if ((correctr - r) > 1) // check if accurate to 1 ulp
|
|
begin
|
|
errors = errors+1;
|
|
$display("failed\n");
|
|
$stop;
|
|
end
|
|
if (a === 52'hxxxxxxxxxxxxx)
|
|
begin
|
|
$display("Tests completed successfully");
|
|
$stop;
|
|
end
|
|
end
|
|
if (req)
|
|
begin
|
|
req <= #5 0;
|
|
correctr = nextr;
|
|
testnum = testnum+1;
|
|
Vec = Tests[testnum];
|
|
$display("a = %h b = %h",a,b);
|
|
a = Vec[`mema];
|
|
b = Vec[`memb];
|
|
nextr = Vec[`memr];
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|